Distributed compensation solution with central control to minimize power losses of an electric power grid containing loads of 3-phase asynchronous motor loads
114 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.96.2024.51-60Keywords:
3-phase induction motors; Voltage variation; Reactive power; Reactive power compensator; Motor efficiency.Abstract
This paper presents an optimization method to minimize the active power loss of the power grid based on the Lagrange method. Our proposed method is applied to power grids containing many high-capacity three-phase motor loads. Through analyzing the advantages and disadvantages of reactive power compensation solutions, the paper proposes to use a centralized control distributed compensation solution that takes into account the factor of improving the performance of the motor in the system. The proposed compensation system consists of distributed compensators at each load along with a central compensator controlled by a single controller. This paper proposes a step-by-step strategy to control reactive power compensation for each load to optimize the active power loss of the entire plant, which means, improving voltage quality at loads, reducing active power losses as well as prolonging the lifespan of the devices. Simulation results are provided to demonstrate the effectiveness and applicability of the proposed method.
References
[1]. Omkar Pawar, P. Marshall Arockia Dass, and Dr. A Peer Fathima, “Power Quality Improvement Using Compensating Type Custom Power Devices: A Review,” Natl. Conf. Sci. Eng. Technol., vol. 4, no. 6, pp. 155–158, (2016).
[2]. Sumit Mazumder Ami, “Power quality improvements in low voltage distribution networks containing distributed energy resources,” Queensland University of Technology, (2015).
[3]. A. H. Bonnett, “The impact that voltage and frequency variations have on AC induction motor performance and life in accordance with NEMA MG-1 standards,” in Conference Record of 1999 Annual Pulp and Paper Industry Technical Conference (Cat. No.99CH36338), Seattle, WA, USA: IEEE, pp. 16–26, (1999). doi: 10.1109/PAPCON.1999.779341. DOI: https://doi.org/10.1109/PAPCON.1999.779341
[4]. R. E. Arajo, Ed., Induction Motors - Modelling and Control. InTech, (2012). doi: 10.5772/2498. DOI: https://doi.org/10.5772/2498
[5]. A. H. Bonnett, “An overview of how AC induction motor performance has been affected by the October 24, 1997 implementation of the Energy Policy Act of 1992,” in Record of Conference Papers. IEEE Industry Applications Society 45th Annual Petroleum and Chemical Industry Conference (Cat. No.98CH36234), Indianapolis, IN, USA: IEEE, pp. 149–164, (1998). doi: 10.1109/PCICON.1998.727942. DOI: https://doi.org/10.1109/PCICON.1998.727942
[6]. Trần Đình Long, “Sổ tay tra cứu về chất lượng điện năng,” in Sổ tay tra cứu về chất lượng điện năng, Hội điện lực Việt Nam, (2014).
[7]. В.В. Карагодин and Д.В. Рыбаков, “ОПТИМИЗАЦИЯ РАЗМЕЩЕНИЯ УСТРОЙСТВ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ В РАСПРЕДЕЛИТЕЛЬНЫХ ЭЛЕКТРИЧЕСКИХ СЕТЯХ,” Вопросы Электромеханики, p. T144, (2015).
[8]. S. S. Kanojia and Suketu Rajyaguru, “Reactive Power Compensation for LV Distribution Network,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 6, (2019).
[9]. “NEMA Standards Publication MG 1-2006 Revision 1-2007 Motors and Generators.” National Electrical Manufacturers Association, (2006).
[10]. AustinH.Bonnett and RobBoteler, “The Impact That Voltage Variations Have on AC Induction Motor Performance,” Pulp Pap. IEEE, (1999).
[11]. J. Dixon, L. Moran, J. Rodriguez, and R. Domke, “Reactive Power Compensation Technologies: State-of-the-Art Review,” Proc. IEEE, vol. 93, no. 12, pp. 2144–2164, (2005), doi: 10.1109/JPROC.2005.859937. DOI: https://doi.org/10.1109/JPROC.2005.859937
[12]. S. Mirsaeidi et al., “Optimization of FACTS Devices: Classification, Recent Trends, and Future Outlook,” in 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China: IEEE, pp. 1–8, (2021). doi: 10.1109/CIEEC50170.2021.9510336. DOI: https://doi.org/10.1109/CIEEC50170.2021.9510336
[13]. V. N. Sewdien, “Operation of FACTS Controllers,” in Flexible AC Transmission Systems, B. R. Andersen and S. L. Nilsson, Eds., in CIGRE Green Books. , Cham: Springer International Publishing, pp. 1063–1070, (2020). doi: 10.1007/978-3-030-35386-5_23. DOI: https://doi.org/10.1007/978-3-030-35386-5_23
[14]. J. M. Maza-Ortega, E. Acha, S. García, and A. Gómez-Expósito, “Overview of power electronics technology and applications in power generation transmission and distribution,” J. Mod. Power Syst. Clean Energy, vol. 5, no. 4, pp. 499–514, (2017), doi: 10.1007/s40565-017-0308-x. DOI: https://doi.org/10.1007/s40565-017-0308-x
[15]. Aushiq Ali Memon, “Analyses of reactive power compensation strategies in medium and low voltage electrical network systems in the wake of renewable energy infeed,” (2013), doi: 10.13140/RG.2.1.3130.8002.
[16]. T. A. Boghdady and Y. A. Mohamed, “Reactive power compensation using STATCOM in a PV grid connected system with a modified MPPT method,” Ain Shams Eng. J., vol. 14, no. 8, p. 102060, (2023), doi: 10.1016/j.asej.2022.102060. DOI: https://doi.org/10.1016/j.asej.2022.102060
[17]. Hà Văn Du, “Ứng dụng STATCOM để điều chỉnh điện áp và bù công suất phản kháng cho hệ thống điện,” Tạp Chí Khoa Học Đại Học Thủ Dầu Một, vol. 46, no. 3, (2020).
[18]. F. Rezaei and S. Esmaeili, “Decentralized reactive power control of distributed PV and wind power generation units using an optimized fuzzy-based method,” Int. J. Electr. Power Energy Syst., vol. 87, pp. 27–42, (2017), doi: 10.1016/j.ijepes.2016.10.015. DOI: https://doi.org/10.1016/j.ijepes.2016.10.015
[19]. T. Yuvaraj et al., “Comparative analysis of various compensating devices in energy trading radial distribution system for voltage regulation and loss mitigation using Blockchain technology and Bat Algorithm,” Energy Rep., vol. 7, pp. 8312–8321, (2021), doi: 10.1016/j.egyr.2021.08.184. DOI: https://doi.org/10.1016/j.egyr.2021.08.184
[20]. A. F. Savadkouhi, F. Elyasichamazkoti, and M. F. Fard, “Decentralized Reactive Power Sharing in Autonomous Microgrids,” in 2021 IEEE Electrical Power and Energy Conference (EPEC), Toronto, ON, Canada: IEEE, pp. 75–80, (2021). doi: 10.1109/EPEC52095.2021.9621415. DOI: https://doi.org/10.1109/EPEC52095.2021.9621415
[21]. Nguyen Tien Dung, Dinh Ngoc Quang, and Bui Anh Tuan, “Voltage quality improvement for induction motor in power system,” EPU J. Sci. Technol. Energy, vol. 22, no. 22, pp. 48–57, (2020).
[22]. T.-D. Nguyen, A.-T. Bui, N.-K. Nguyen, T.-D. Bui, N.-Q. Dinh, and T.-D. Pham, “A Novel Hybrid DC–CC–Based Reactive Power Compensation Scheme to Improve Power Quality of an Electric Grid Considering the Efficiency of Asynchronous Induction Motors,” Int. J. Electr. Electron. Eng., vol. 10, no. 8, pp. 156–169, (2023), doi: 10.14445/23488379/IJEEE-V10I8P115. DOI: https://doi.org/10.14445/23488379/IJEEE-V10I8P115
[23]. Trần Bách, “Giáo trình lưới điện”. Nhà xuất bản giáo dục, (2007).
[24]. “Quy định các thiết bị và day dẫn cho trạm theo quyết định số 4218/QĐ-EVN ngày 03/07/2001.” EVN, (2001).
[25]. M. E. Elkhatib, R. E. Shatshat, and M. M. A. Salama, “Decentralized Reactive Power Control for Advanced Distribution Automation Systems,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1482–1490, (2012), doi: 10.1109/TSG.2012.2197833. DOI: https://doi.org/10.1109/TSG.2012.2197833
[26]. S. Bolognani and S. Zampieri, “A Distributed Control Strategy for Reactive Power Compensation in Smart Microgrids,” IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2818–2833, (2013), doi: 10.1109/TAC.2013.2270317. DOI: https://doi.org/10.1109/TAC.2013.2270317
[27]. S. Lin et al., “Robust Optimal Allocation of Decentralized Reactive Power Compensation in Three-Phase Four-Wire Low-Voltage Distribution Networks Considering the Uncertainty of Photovoltaic Generation,” Energies, vol. 12, no. 13, p. 2479, (2019), doi: 10.3390/en12132479. DOI: https://doi.org/10.3390/en12132479