Research on building a model of multi-sensor optoelectronic system to control the surface of large objects
126 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.97.2024.119-128Keywords:
Optoelectronic system (OES); Multi-sensor camera; Radio telescope; Main reflector (MR); Control point.Abstract
This study proposed and studied a completely new optoelectronic system (OES) with multi-sensor matrix structure (CMOS) for measuring the main reflector surface deformation (MR) of a big-sized radio telescope. This system includes 24 multi-sensor cameras, in each 25 sensors are arranged, and each sensor is responsible for image acquisition of a control point on the MR surface. The simulation and calculation studies show that angular and linear errors when determining the initial position of multi-sensor cameras do not exceed 0.05 arcsecond and 0.005 mm, which will ensure an accuracy of 0.1 mm when locating control points on the main reflector surface. At the same time, the simulation also shows that the proposed EOS can control the entire reflector with the surface error not exceeding the limit value of 0.05 mm.
References
[1]. Bolli P et al., “The Mobile Laboratory for Radio-Frequency Interference Monitoring at the Sardinia Radio Telescope”, IEEE Antennas and Propagation Magazine, 55(5):19-24, (2014). DOI: https://doi.org/10.1109/MAP.2013.6735468
[2]. Andrew Glassner, “An introduction to ray tracing”, Elsevier, (1989).
[3]. Радиотелескоп РТ-70, [Online], URL: http://mp.ipme.ru/ipme/labs/RT-70/sou30 rce/start.html
[4]. Rui L, “Research on content-based remote sensing image retrieval: the strategy for visual feature selection, extraction, description and similarity measurement”, Proceedings (Cat. No. 01EX479), (2001).
[5]. Gao Y. et al., “Development and calibration of an accurate 6-degree-of-freedom measurement system with total station”, Measurement Science and Technology, 27(12): 125103, (2016). DOI: https://doi.org/10.1088/0957-0233/27/12/125103
[6]. Boniger U et al., “On the Potential of Kinematic GPR Surveying Using a Self-Tracking Total Station: Evaluating System Crosstalk and Latency”, IEEE Transactions on Geoscience and Remote Sensing, (2010). DOI: https://doi.org/10.1109/TGRS.2010.2048332
[7]. Li J. et al., “Fast and accurate measurement of large optical surfaces before polishing using a laser tracker”, Chinese Optics Letters, 11(9):091202-91204, (2013). DOI: https://doi.org/10.3788/COL201311.091202
[8]. Um K et al., “Developing a laser theodolite for detecting distance using phase difference of incident and reflected waves”, Electronic Materials Letters, 9(4):421-423, (2013). DOI: https://doi.org/10.1007/s13391-013-0022-4
[9]. Konyakhin I et al., “Control of the deformation for the millimeter wave range radiotelescope mirrors”, International Society for Optics and Photonics, 7133: 71333R, (2009). DOI: https://doi.org/10.1117/12.808154
[10]. Igor Konyakhin et al., “The experimental research of the systems for measuring the angle rotations and line shifts of the large aperture radio-telescope components”, Proc. SPIE, Vol. 7544, (2010). DOI: https://doi.org/10.1117/12.885604
[11]. Konyakhin I.A., Tong M.H., “Multi-matrix optic-electronic systems for measuring the line shifts of the points on the radio-telescope main mirror”, Proceedings of SPIE, Vol. 11053, pp. 1105307, (2019). DOI: https://doi.org/10.1117/12.2512113
[12]. Li R. et al., “Multi-matrix opto-electronic system for measuring deformation of the millimeter range radiotelescope elements”, Optoelectronics Letters, Vol. 15, No. 2, pp. 144-146, (2019). DOI: https://doi.org/10.1007/s11801-019-8191-5
[13]. Коняхин И.А., Усик А.А., “Исследование многоматричной оптико-электронной системы контроля элементов радиотелескопа РТ-70 «СУФФА»”, Оптический журнал, том.80, №12, (2013).
[14]. Бузян А.Т., “Исследование системы контроля положения элементов конструкции радиотелескопа РТ-70 на физической модели”, Труды КМУ 2005, 2005, 298-300 с.
[15]. Korn G.A., Korn T.M. “Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review”, vol. 1152. Dover Publications, New York (2000).
[16]. Хоанг А.Ф et al., “Анализ погрешности определения параметров поворота мультиматричного блока прогибомера”, Вестник ИТМО. - Т. 19. - № 5(123). - С. 818-824, (2019).
[17]. Phuong H. et al., “Optical-Electronic System for Measuring Spatial Coordinates of an Object by Reference Marks”, Studies in Systems, Decision and Control, Vol. 261, pp. 217-227, (2020). DOI: https://doi.org/10.1007/978-3-030-32710-1_17