Study on fabrication of graphene – supported Fe2O3 and MgO mixed oxides composite and its application as adsorbent for the removal of As ions aqueous media
296 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.VITTEP.2022.91-99Keywords:
GNPs/Fe-Mg oxide composite; Fe-Mg binary oxide; Arsenic adsorption.Abstract
Graphene nanoplates (GNPs) can be used as a platform for homogeneous distribution of adsorbent nanoparticles to improve electrons exchange, absorption sites and ion transports for heavy metal adsorption. In this work, graphene/Fe2O3-MgO nanocomposite was fabricated using a facile thermal decomposition route. The prepared composite was characterized by using scanning electron microscopy (SEM), transmittance electron microscopy (TEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), and FTIR. The graphene/Fe2O3-MgO nanocomposite revealed high and quick adsorption performance toward arsenic in a wide range of solution pH with exceptional durability and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solution.
References
[1]. Kitchin, K.T.; Conolly, R. Arsenic-“Induced Carcinogenesis - Oxidative Stress as a Possible Mode of Action and Future Research Needs for More Biologically Based Risk Assessment”. Chemical research in toxicology, 23, 327-335, (2009). https://doi.org/10.1021/tx900343d DOI: https://doi.org/10.1021/tx900343d
[2]. Erdoğan, H.; Yalçınkaya, Ö.; Türker, A.R. “Determination of inorganic arsenic species by hydride generation atomic absorption spectrometry in water samples after preconcentration/separation on nano ZrO2/B2O3 by solid phase extraction”. Desalination, 280, 391-396, (2011). https://doi.org/10.1016/j.desal.2011.07.029 DOI: https://doi.org/10.1016/j.desal.2011.07.029
[3]. Tuzen, M.; Çıtak, D.; Mendil, D.; Soylak, M. “Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination”. Talanta, 78, 52-56, (2009). https://doi.org/10.1016/j.talanta.2008.10.035 DOI: https://doi.org/10.1016/j.talanta.2008.10.035
[4]. Bissen, M.; Frimmel, F.H. “Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility”. Acta hydrochimica et hydrobiologica, 31, 9-18, (2003). https://doi.org/10.1002/aheh.200390025 DOI: https://doi.org/10.1002/aheh.200390025
[5]. Mohan, D.; Pittman, C.U. “Arsenic removal from water/wastewater using adsorbents—a critical review”. Journal of hazardous materials, 142, 1-53, (2007). https://doi.org/10.1016/j.jhazmat.2007.01.006 DOI: https://doi.org/10.1016/j.jhazmat.2007.01.006
[6]. Jadhav, S.V.; Bringas, E.; Yadav, G.D.; Rathod, V.K.; Ortiz, I.; Marathe, K.V. “Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal”. Journal of environmental management, 162, 306-325, (2015). https://doi.org/10.1016/j.jenvman.2015.07.020 DOI: https://doi.org/10.1016/j.jenvman.2015.07.020
[7]. Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. “Arsenic contamination, consequences and remediation techniques: a review”. Ecotoxicology and environmental safety, 112, 247-270, (2015). https://doi.org/10.1016/j.ecoenv.2014.10.009 DOI: https://doi.org/10.1016/j.ecoenv.2014.10.009
[8]. Kurniawan, T.A.; Sillanpää, M.E.; Sillanpää, M. “Nanoadsorbents for remediation of aquatic environment: local and practical solutions for global water pollution problems”. Critical reviews in environmental science and technology, 42, 1233-1295, (2012). https://doi.org/10.1080/10643389.2011.556553 DOI: https://doi.org/10.1080/10643389.2011.556553
[9]. Ray, P.Z.; Shipley, H.J. “Inorg anic nano-adsorbents for the removal of heavy metals and arsenic: a review”. Rsc Advances, 5, 29885-29907, (2015). https://doi.org/10.1039/C5RA02714D DOI: https://doi.org/10.1039/C5RA02714D
[10]. Jézéquel, H.; Chu, K.H. “Enhanced adsorption of arsenate on titanium dioxide using Ca and Mg ions”. Environmental Chemistry Letters, 3, 132-135, (2005). https://doi.org/10.1007/s10311-005-0018-x DOI: https://doi.org/10.1007/s10311-005-0018-x
[11]. Deedar, N.; Aslam, I. “Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal”. Journal of Environmental Sciences, 21, 402-408, (2009). https://doi.org/10.1016/S1001-0742(08)62283-4 DOI: https://doi.org/10.1016/S1001-0742(08)62283-4
[12]. Xu, Z.; Li, Q.; Gao, S.; Shang, J.K. “As (III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl 4 solution”. Water research, 44, 5713-5721, (2010). https://doi.org/10.1016/j.watres.2010.05.051 DOI: https://doi.org/10.1016/j.watres.2010.05.051
[13]. Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M. “Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism”. Chemical Engineering Journal, 243, 14-23, (2014). https://doi.org/10.1016/j.cej.2013.12.049 DOI: https://doi.org/10.1016/j.cej.2013.12.049
[14]. Dong, H.; Guan, X.; Lo, I.M. “Fate of As (V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction”. Water research, 46, 4071-4080, (2012). https://doi.org/10.1016/j.watres.2012.05.015 DOI: https://doi.org/10.1016/j.watres.2012.05.015
[15]. Tang, W.; Li, Q.; Gao, S.; Shang, J.K. “Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method”. Journal of hazardous materials, 192, 131-138, (2011). https://doi.org/10.1016/j.jhazmat.2011.04.111 DOI: https://doi.org/10.1016/j.jhazmat.2011.04.111
[16]. Tang, W.; Li, Q.; Li, C.; Gao, S.; Shang, J.K. “Ultrafine α-Fe2O3 nanoparticles grown in confinement of in situ self-formed “cage” and their superior adsorption performance on arsenic (III)”. Journal of Nanoparticle Research, 13, 2641-2651, (2011). https://doi.org/10.1007/s11051-010-0157-2 DOI: https://doi.org/10.1007/s11051-010-0157-2
[17]. Akin, I.; Arslan, G.; Tor, A.; Ersoz, M.; Cengeloglu, Y. “Arsenic (V) removal from underground water by magnetic nanoparticles synthesized from waste red mud”. Journal of hazardous materials, 235, 62-68, (2012). https://doi.org/10.1016/j.jhazmat.2012.06.024 DOI: https://doi.org/10.1016/j.jhazmat.2012.06.024
[18]. Feng, Q.; Zhang, Z.; Ma, Y.; He, X.; Zhao, Y.; Chai, Z. “Adsorption and desorption characteristics of arsenic onto ceria nanoparticles”. Nanoscale research letters, 7, 1-8, (2012). https:/doi.org/10.1186/1556-276x-7-84 DOI: https://doi.org/10.1186/1556-276X-7-84
[19]. Reddy, K.; McDonald, K.; King, H. “A novel arsenic removal process for water using cupric oxide nanoparticles”. Journal of colloid and interface science, 397, 96-102, (2013). https://doi.org/10.1016/j.jcis.2013.01.041 DOI: https://doi.org/10.1016/j.jcis.2013.01.041
[20]. Goswami, A.; Raul, P.; Purkait, M. “Arsenic adsorption using copper (II) oxide nanoparticles”. Chemical Engineering Research and Design, 90, 1387-1396, (2012). https://doi.org/10.1016/j.cherd.2011.12.006 DOI: https://doi.org/10.1016/j.cherd.2011.12.006
[21]. Olyaie, E.; Banejad, H.; Afkhami, A.; Rahmani, A.; Khodaveisi, J. “Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles”. Separation and purification technology, 95, 10-15, (2012). https://doi.org/10.1016/j.seppur.2012.04.021 DOI: https://doi.org/10.1016/j.seppur.2012.04.021
[22]. Cui, H.; Su, Y.; Li, Q.; Gao, S.; Shang, J.K. “Exceptional arsenic (III, V) removal performance of highly porous, nanostructured ZrO 2 spheres for fixed bed reactors and the full-scale system modeling”. Water research, 47, 6258-6268, (2013). https://doi.org/10.1016/j.watres.2013.07.040 DOI: https://doi.org/10.1016/j.watres.2013.07.040
[23]. Cui, H.; Li, Q.; Gao, S.; Shang, J.K. “Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles”. Journal of Industrial and Engineering Chemistry, 18, 1418-1427, (2012). https://doi.org/10.1016/j.jiec.2012.01.045 DOI: https://doi.org/10.1016/j.jiec.2012.01.045
[24]. Habuda-Stanić, M.; Nujić, M. “Arsenic removal by nanoparticles: a review”. Environmental Science and Pollution Research, 22, 8094-8123, (2015). https://doi.org/10.1007/s11356-015-4307-z DOI: https://doi.org/10.1007/s11356-015-4307-z
[25]. Shan, C.; Tong, M. “Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide”. Water research, 47, 3411-3421, (2013). https://doi.org/10.1016/j.watres.2013.03.035 DOI: https://doi.org/10.1016/j.watres.2013.03.035
[26]. Tang, W.; Su, Y.; Li, Q.; Gao, S.; Shang, J.K. “Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation”. Water research, 47, 3624-3634, (2013). https://doi.org/10.1016/j.watres.2013.04.023 DOI: https://doi.org/10.1016/j.watres.2013.04.023
[27]. Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.a.; Grigorieva, I.; Firsov, A. “Electric field effect in atomically thin carbon films”. Science, 306, 666-669, (2004). https://doi.org/10.1126/science.1102896 DOI: https://doi.org/10.1126/science.1102896
[28]. Bunch, J.S.; Van Der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. “Electromechanical resonators from graphene sheets”. Science, 315, 490-493, (2007). https://10.1126/science.1136836 DOI: https://doi.org/10.1126/science.1136836
[29]. Katsnelson, M.I. “Graphene: carbon in two dimensions”. Materials today, 10, 20-27, (2007). https://doi.org/10.1016/S1369-7021(06)71788-6 DOI: https://doi.org/10.1016/S1369-7021(06)71788-6
[30]. Kopelevich, Y.; Esquinazi, P. “Graphene physics in graphite”. Advanced Materials, 19, 4559-4563, (2007). https://doi.org/10.1002/adma.200702051 DOI: https://doi.org/10.1002/adma.200702051
[31]. Morozov, S.; Novoselov, K.; Katsnelson, M.; Schedin, F.; Elias, D.; Jaszczak, J.; Geim, A. “Giant intrinsic carrier mobilities in graphene and its bilayer”. Physical review letters, 100, 016602, (2008). https://doi.org/10.1103/PhysRevLett.100.016602 DOI: https://doi.org/10.1103/PhysRevLett.100.016602
[32]. Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. “Evaluation of solution-processed reduced graphene oxide films as transparent conductors”. ACS nano, 2, 463-470, (2008). https://doi.org/10.1021/nn700375n DOI: https://doi.org/10.1021/nn700375n
[33]. Gollavelli, G.; Chang, C.-C.; Ling, Y.-C. “Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control”. ACS Sustainable Chemistry & Engineering, 1, 462-472, (2013). https://doi.org/10.1021/sc300112z DOI: https://doi.org/10.1021/sc300112z
[34]. Babu, C.M.; Vinodh, R.; Sundaravel, B.; Abidov, A.; Peng, M.M.; Cha, W.S.; Jang, H.-T. “Characterization of reduced graphene oxide supported mesoporous Fe 2 O 3/TiO 2 nanoparticles and adsorption of As (III) and As (V) from potable water”. Journal of the Taiwan Institute of Chemical Engineers, 62, 199-208, (2016). https://doi.org/10.1016/j.jtice.2016.02.005 DOI: https://doi.org/10.1016/j.jtice.2016.02.005
[35]. Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.; Sood, A. “Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water”. ACS applied materials & interfaces, 6, 17426-17436, (2014). https://doi.org/10.1021/am504826q DOI: https://doi.org/10.1021/am504826q
[36]. La, M.; Duc, D.; Bhargava, S.; Bhosale, S.V. “Improved and A Simple Approach For Mass Production of Graphene Nanoplatelets Material”. ChemistrySelect, 1, 949-952, (2016). https://doi.org/10.1002/slct.201600157 DOI: https://doi.org/10.1002/slct.201600157
[37]. Zhu, J.; Sadu, R.; Wei, S.; Chen, D.H.; Haldolaarachchige, N.; Luo, Z.; Gomes, J.; Young, D.P.; Guo, Z. “Magnetic graphene nanoplatelet composites toward arsenic removal”. ECS Journal of Solid State Science and Technology, 1, M1-M5, (2012). http://dx.doi.org/10.1149/2.010201jss DOI: https://doi.org/10.1149/2.010201jss