Study on fabrication of graphene – supported Fe2O3 and MgO mixed oxides composite and its application as adsorbent for the removal of As ions aqueous media

296 views

Authors

  • Vu Tri Thien (Corresponding Author) Institute of Chemistry and Material, Academy of Military Science and Technology
  • Nguyen Tran Hung Institute of Chemistry and Material, Academy of Military Science and Technology
  • Nguyen Thu Huong Institute of Chemistry and Material, Academy of Military Science and Technology
  • La Duc Duong Institute of Chemistry and Material, Academy of Military Science and Technology
  • Le Huu Thanh Institute of Chemistry and Material, Academy of Military Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.VITTEP.2022.91-99

Keywords:

GNPs/Fe-Mg oxide composite; Fe-Mg binary oxide; Arsenic adsorption.

Abstract

Graphene nanoplates (GNPs) can be used as a platform for homogeneous distribution of adsorbent nanoparticles to improve electrons exchange, absorption sites and ion transports for heavy metal adsorption. In this work, graphene/Fe2O3-MgO nanocomposite was fabricated using a facile thermal decomposition route. The prepared composite was characterized by using scanning electron microscopy (SEM), transmittance electron microscopy (TEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), and FTIR. The graphene/Fe2O3-MgO nanocomposite revealed high and quick adsorption performance toward arsenic in a wide range of solution pH with exceptional durability and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solution.

References

[1]. Kitchin, K.T.; Conolly, R. Arsenic-“Induced Carcinogenesis - Oxidative Stress as a Possible Mode of Action and Future Research Needs for More Biologically Based Risk Assessment”. Chemical research in toxicology, 23, 327-335, (2009). https://doi.org/10.1021/tx900343d DOI: https://doi.org/10.1021/tx900343d

[2]. Erdoğan, H.; Yalçınkaya, Ö.; Türker, A.R. “Determination of inorganic arsenic species by hydride generation atomic absorption spectrometry in water samples after preconcentration/separation on nano ZrO2/B2O3 by solid phase extraction”. Desalination, 280, 391-396, (2011). https://doi.org/10.1016/j.desal.2011.07.029 DOI: https://doi.org/10.1016/j.desal.2011.07.029

[3]. Tuzen, M.; Çıtak, D.; Mendil, D.; Soylak, M. “Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination”. Talanta, 78, 52-56, (2009). https://doi.org/10.1016/j.talanta.2008.10.035 DOI: https://doi.org/10.1016/j.talanta.2008.10.035

[4]. Bissen, M.; Frimmel, F.H. “Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility”. Acta hydrochimica et hydrobiologica, 31, 9-18, (2003). https://doi.org/10.1002/aheh.200390025 DOI: https://doi.org/10.1002/aheh.200390025

[5]. Mohan, D.; Pittman, C.U. “Arsenic removal from water/wastewater using adsorbents—a critical review”. Journal of hazardous materials, 142, 1-53, (2007). https://doi.org/10.1016/j.jhazmat.2007.01.006 DOI: https://doi.org/10.1016/j.jhazmat.2007.01.006

[6]. Jadhav, S.V.; Bringas, E.; Yadav, G.D.; Rathod, V.K.; Ortiz, I.; Marathe, K.V. “Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal”. Journal of environmental management, 162, 306-325, (2015). https://doi.org/10.1016/j.jenvman.2015.07.020 DOI: https://doi.org/10.1016/j.jenvman.2015.07.020

[7]. Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. “Arsenic contamination, consequences and remediation techniques: a review”. Ecotoxicology and environmental safety, 112, 247-270, (2015). https://doi.org/10.1016/j.ecoenv.2014.10.009 DOI: https://doi.org/10.1016/j.ecoenv.2014.10.009

[8]. Kurniawan, T.A.; Sillanpää, M.E.; Sillanpää, M. “Nanoadsorbents for remediation of aquatic environment: local and practical solutions for global water pollution problems”. Critical reviews in environmental science and technology, 42, 1233-1295, (2012). https://doi.org/10.1080/10643389.2011.556553 DOI: https://doi.org/10.1080/10643389.2011.556553

[9]. Ray, P.Z.; Shipley, H.J. “Inorg anic nano-adsorbents for the removal of heavy metals and arsenic: a review”. Rsc Advances, 5, 29885-29907, (2015). https://doi.org/10.1039/C5RA02714D DOI: https://doi.org/10.1039/C5RA02714D

[10]. Jézéquel, H.; Chu, K.H. “Enhanced adsorption of arsenate on titanium dioxide using Ca and Mg ions”. Environmental Chemistry Letters, 3, 132-135, (2005). https://doi.org/10.1007/s10311-005-0018-x DOI: https://doi.org/10.1007/s10311-005-0018-x

[11]. Deedar, N.; Aslam, I. “Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal”. Journal of Environmental Sciences, 21, 402-408, (2009). https://doi.org/10.1016/S1001-0742(08)62283-4 DOI: https://doi.org/10.1016/S1001-0742(08)62283-4

[12]. Xu, Z.; Li, Q.; Gao, S.; Shang, J.K. “As (III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl 4 solution”. Water research, 44, 5713-5721, (2010). https://doi.org/10.1016/j.watres.2010.05.051 DOI: https://doi.org/10.1016/j.watres.2010.05.051

[13]. Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M. “Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism”. Chemical Engineering Journal, 243, 14-23, (2014). https://doi.org/10.1016/j.cej.2013.12.049 DOI: https://doi.org/10.1016/j.cej.2013.12.049

[14]. Dong, H.; Guan, X.; Lo, I.M. “Fate of As (V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction”. Water research, 46, 4071-4080, (2012). https://doi.org/10.1016/j.watres.2012.05.015 DOI: https://doi.org/10.1016/j.watres.2012.05.015

[15]. Tang, W.; Li, Q.; Gao, S.; Shang, J.K. “Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method”. Journal of hazardous materials, 192, 131-138, (2011). https://doi.org/10.1016/j.jhazmat.2011.04.111 DOI: https://doi.org/10.1016/j.jhazmat.2011.04.111

[16]. Tang, W.; Li, Q.; Li, C.; Gao, S.; Shang, J.K. “Ultrafine α-Fe2O3 nanoparticles grown in confinement of in situ self-formed “cage” and their superior adsorption performance on arsenic (III)”. Journal of Nanoparticle Research, 13, 2641-2651, (2011). https://doi.org/10.1007/s11051-010-0157-2 DOI: https://doi.org/10.1007/s11051-010-0157-2

[17]. Akin, I.; Arslan, G.; Tor, A.; Ersoz, M.; Cengeloglu, Y. “Arsenic (V) removal from underground water by magnetic nanoparticles synthesized from waste red mud”. Journal of hazardous materials, 235, 62-68, (2012). https://doi.org/10.1016/j.jhazmat.2012.06.024 DOI: https://doi.org/10.1016/j.jhazmat.2012.06.024

[18]. Feng, Q.; Zhang, Z.; Ma, Y.; He, X.; Zhao, Y.; Chai, Z. “Adsorption and desorption characteristics of arsenic onto ceria nanoparticles”. Nanoscale research letters, 7, 1-8, (2012). https:/doi.org/10.1186/1556-276x-7-84 DOI: https://doi.org/10.1186/1556-276X-7-84

[19]. Reddy, K.; McDonald, K.; King, H. “A novel arsenic removal process for water using cupric oxide nanoparticles”. Journal of colloid and interface science, 397, 96-102, (2013). https://doi.org/10.1016/j.jcis.2013.01.041 DOI: https://doi.org/10.1016/j.jcis.2013.01.041

[20]. Goswami, A.; Raul, P.; Purkait, M. “Arsenic adsorption using copper (II) oxide nanoparticles”. Chemical Engineering Research and Design, 90, 1387-1396, (2012). https://doi.org/10.1016/j.cherd.2011.12.006 DOI: https://doi.org/10.1016/j.cherd.2011.12.006

[21]. Olyaie, E.; Banejad, H.; Afkhami, A.; Rahmani, A.; Khodaveisi, J. “Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles”. Separation and purification technology, 95, 10-15, (2012). https://doi.org/10.1016/j.seppur.2012.04.021 DOI: https://doi.org/10.1016/j.seppur.2012.04.021

[22]. Cui, H.; Su, Y.; Li, Q.; Gao, S.; Shang, J.K. “Exceptional arsenic (III, V) removal performance of highly porous, nanostructured ZrO 2 spheres for fixed bed reactors and the full-scale system modeling”. Water research, 47, 6258-6268, (2013). https://doi.org/10.1016/j.watres.2013.07.040 DOI: https://doi.org/10.1016/j.watres.2013.07.040

[23]. Cui, H.; Li, Q.; Gao, S.; Shang, J.K. “Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles”. Journal of Industrial and Engineering Chemistry, 18, 1418-1427, (2012). https://doi.org/10.1016/j.jiec.2012.01.045 DOI: https://doi.org/10.1016/j.jiec.2012.01.045

[24]. Habuda-Stanić, M.; Nujić, M. “Arsenic removal by nanoparticles: a review”. Environmental Science and Pollution Research, 22, 8094-8123, (2015). https://doi.org/10.1007/s11356-015-4307-z DOI: https://doi.org/10.1007/s11356-015-4307-z

[25]. Shan, C.; Tong, M. “Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide”. Water research, 47, 3411-3421, (2013). https://doi.org/10.1016/j.watres.2013.03.035 DOI: https://doi.org/10.1016/j.watres.2013.03.035

[26]. Tang, W.; Su, Y.; Li, Q.; Gao, S.; Shang, J.K. “Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation”. Water research, 47, 3624-3634, (2013). https://doi.org/10.1016/j.watres.2013.04.023 DOI: https://doi.org/10.1016/j.watres.2013.04.023

[27]. Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.a.; Grigorieva, I.; Firsov, A. “Electric field effect in atomically thin carbon films”. Science, 306, 666-669, (2004). https://doi.org/10.1126/science.1102896 DOI: https://doi.org/10.1126/science.1102896

[28]. Bunch, J.S.; Van Der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. “Electromechanical resonators from graphene sheets”. Science, 315, 490-493, (2007). https://10.1126/science.1136836 DOI: https://doi.org/10.1126/science.1136836

[29]. Katsnelson, M.I. “Graphene: carbon in two dimensions”. Materials today, 10, 20-27, (2007). https://doi.org/10.1016/S1369-7021(06)71788-6 DOI: https://doi.org/10.1016/S1369-7021(06)71788-6

[30]. Kopelevich, Y.; Esquinazi, P. “Graphene physics in graphite”. Advanced Materials, 19, 4559-4563, (2007). https://doi.org/10.1002/adma.200702051 DOI: https://doi.org/10.1002/adma.200702051

[31]. Morozov, S.; Novoselov, K.; Katsnelson, M.; Schedin, F.; Elias, D.; Jaszczak, J.; Geim, A. “Giant intrinsic carrier mobilities in graphene and its bilayer”. Physical review letters, 100, 016602, (2008). https://doi.org/10.1103/PhysRevLett.100.016602 DOI: https://doi.org/10.1103/PhysRevLett.100.016602

[32]. Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. “Evaluation of solution-processed reduced graphene oxide films as transparent conductors”. ACS nano, 2, 463-470, (2008). https://doi.org/10.1021/nn700375n DOI: https://doi.org/10.1021/nn700375n

[33]. Gollavelli, G.; Chang, C.-C.; Ling, Y.-C. “Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control”. ACS Sustainable Chemistry & Engineering, 1, 462-472, (2013). https://doi.org/10.1021/sc300112z DOI: https://doi.org/10.1021/sc300112z

[34]. Babu, C.M.; Vinodh, R.; Sundaravel, B.; Abidov, A.; Peng, M.M.; Cha, W.S.; Jang, H.-T. “Characterization of reduced graphene oxide supported mesoporous Fe 2 O 3/TiO 2 nanoparticles and adsorption of As (III) and As (V) from potable water”. Journal of the Taiwan Institute of Chemical Engineers, 62, 199-208, (2016). https://doi.org/10.1016/j.jtice.2016.02.005 DOI: https://doi.org/10.1016/j.jtice.2016.02.005

[35]. Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.; Sood, A. “Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water”. ACS applied materials & interfaces, 6, 17426-17436, (2014). https://doi.org/10.1021/am504826q DOI: https://doi.org/10.1021/am504826q

[36]. La, M.; Duc, D.; Bhargava, S.; Bhosale, S.V. “Improved and A Simple Approach For Mass Production of Graphene Nanoplatelets Material”. ChemistrySelect, 1, 949-952, (2016). https://doi.org/10.1002/slct.201600157 DOI: https://doi.org/10.1002/slct.201600157

[37]. Zhu, J.; Sadu, R.; Wei, S.; Chen, D.H.; Haldolaarachchige, N.; Luo, Z.; Gomes, J.; Young, D.P.; Guo, Z. “Magnetic graphene nanoplatelet composites toward arsenic removal”. ECS Journal of Solid State Science and Technology, 1, M1-M5, (2012). http://dx.doi.org/10.1149/2.010201jss DOI: https://doi.org/10.1149/2.010201jss

Published

20-12-2022

How to Cite

Vu, T. T., H. Nguyen Tran, H. Nguyen Thu, D. La Duc, and T. Le Huu. “Study on Fabrication of Graphene – Supported Fe2O3 and MgO Mixed Oxides Composite and Its Application As Adsorbent for the Removal of As Ions Aqueous Media”. Journal of Military Science and Technology, no. VITTEP, Dec. 2022, pp. 91-99, doi:10.54939/1859-1043.j.mst.VITTEP.2022.91-99.

Issue

Section

Research Articles