A theoretical study of the first-row transition metal doped germanium clusters Ge14M
191 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.87.2023.50-58Keywords:
Doped germanium clusters; Density functional theory; Binding energy; Embedded energy.Abstract
Geometry, stability, electronic structure, and magnetic properties of Ge14M clusters with M being a 3d transition metal atom, from Sc to Zn, were studied using density functional theory (DFT) calculations at B3PW91/6-311+G(d) level. The obtained results found that Ge14M clusters preferentially exist in its lowest possible spin state, except for M being Fe and Cr. The thermodynamic stability of the structures has been evaluated through the average binding and embedded energies. Ge14Ti and Ge14V clusters are considered to be the most stable in the Ge14M series (M = Sc - Zn) with the geometry of the C2 point group where M is located in the center of the Ge12 hexagonal prism along with two Ge-atoms capping on two Ge6 faces. In this series Ge14M clusters, only Ge14Fe cluster is stable at the high spin state, with a magnetic moment of 2mB.
References
[1]. J. Atobe, K. Koyasu, S. Furuse, and A. Nakajima, “Anion photoelectron spectroscopy of germanium and tin clusters containing a transition- or lanthanide-metal atom; MGen− (n = 8–20) and MSnn− (n = 15–17) (M = Sc–V, Y–Nb, and Lu–Ta),” Physical Chemistry Chemical Physics, vol. 14, no. 26, pp. 9403–9410, (2012). DOI: https://doi.org/10.1039/c2cp23247b
[2]. Q. Jing, F. Tian, and Y. Wang, “No quenching of magnetic moment for the GenCo (n=1–13) clusters: First-principles calculations,” The Journal of Chemical Physics, vol. 128, no. 12, p. 124319, (2008). DOI: https://doi.org/10.1063/1.2898880
[3]. M. Shibuta, T. Niikura, T. Kamoshida, H. Tsunoyama, and A. Nakajima, “Nitric oxide oxidation of a Ta encapsulating Si cage nanocluster superatom (Ta@Si16) deposited on an organic substrate; a Si cage collapse indicator,” Physical Chemistry Chemical Physics, vol. 20, no. 41, pp. 26273–26279, (2018). DOI: https://doi.org/10.1039/C8CP05580G
[4]. M. Kumar, N. Bhattacharyya, and D. Bandyopadhyay, “Architecture, electronic structure and stability of TM@ Ge (n)(TM= Ti, Zr and Hf; n= 1-20) clusters: a density functional modeling,” Journal of molecular modeling, vol. 18, no. 1, pp. 405–418, (2012). DOI: https://doi.org/10.1007/s00894-011-1122-4
[5]. H. T. Nguyen, N. T. Cuong, N. T. Lan, N. T. Tung, M. T. Nguyen, and N. M. Tam, “First-row transition metal doped germanium clusters Ge16M: some remarkable superhalogens,” RSC Advances, vol. 12, no. 21, pp. 13487–13499, (2022). DOI: https://doi.org/10.1039/D1RA08527A
[6]. C. Siouani, S. Mahtout, S. Safer, and F. Rabilloud, “Structure, Stability, and Electronic and Magnetic Properties of VGen (n = 1–19) Clusters,” The Journal of Physical Chemistry A, vol. 121, no. 18, pp. 3540–3554, (2017). DOI: https://doi.org/10.1021/acs.jpca.7b00881
[7]. W.-J. Zhao and Y.-X. Wang, “Geometries, stabilities, and magnetic properties of MnGen (n=2–16) clusters: Density-functional theory investigations,” Journal of Molecular Structure: THEOCHEM, vol. 901, no. 1, pp. 18–23, (2009). DOI: https://doi.org/10.1016/j.theochem.2008.12.039
[8]. W.-J. Zhao and Y.-X. Wang, “Geometries, stabilities, and electronic properties of FeGen (n=9–16) clusters: Density-functional theory investigations,” Chemical Physics, vol. 352, no. 1, pp. 291–296, (2008). DOI: https://doi.org/10.1016/j.chemphys.2008.07.006
[9]. K. Dhaka and D. Bandyopadhyay, “Study of the electronic structure, stability and magnetic quenching of CrGen (n = 1–17) clusters: a density functional investigation,” RSC Advances, vol. 5, no. 101, pp. 83004–83012, (2015). DOI: https://doi.org/10.1039/C5RA13849C
[10]. K. Wang, Z.-Z. Jia, R.-Y. Wang, X.-D. Zhu, R. Moro, and L. Ma, “TMGe8-17− (TM = Ti, Zr, Hf, V, Nb, Ta) clusters: group determined properties,” The European Physical Journal Plus, vol. 137, no. 8, p. 949, (2022). DOI: https://doi.org/10.1140/epjp/s13360-022-03141-4
[11]. X.-J. Deng, X.-Y. Kong, H.-G. Xu, X.-L. Xu, G. Feng, and W.-J. Zheng, “Photoelectron Spectroscopy and Density Functional Calculations of VGen– (n = 3–12) Clusters,” The Journal of Physical Chemistry C, vol. 119, no. 20, pp. 11048–11055, (2015). DOI: https://doi.org/10.1021/jp511694c
[12]. M.J. Frisch et al., “Gaussian 09 Revision C.01, Gaussian Inc. Wallingford CT.,” Computer program. (2010).
[13]. G. V Gadiyak, Y. N. Morokov, A. G. Mukhachev, and S. V Chernov, “Electron density functional method for molecular system calculations,” Journal of Structural Chemistry, vol. 22, no. 5, pp. 670–674, (1982). DOI: https://doi.org/10.1007/BF00746425
[14]. J. R. Lombardi and B. Davis, “Periodic Properties of Force Constants of Small Transition-Metal and Lanthanide Clusters,” Chemical Reviews, vol. 102, no. 6, pp. 2431–2460, (2002). DOI: https://doi.org/10.1021/cr010425j
[15]. A. Neckel and G. Sodeck, “Bestimmung der Dissoziationsenergien der gasförmigen Moleküle CuGe, AgGe und AuGe,” Monatshefte für Chemie / Chemical Monthly, vol. 103, no. 1, pp. 367–382, (1972). DOI: https://doi.org/10.1007/BF00912960
[16]. A. D. Sappey, J. E. Harrington, and J. C. Weisshaar, “Resonant two‐photon ionization‐photoelectron spectroscopy of Cu2: Autoionization dynamics and Cu2+ vibronic states,” The Journal of chemical physics, vol. 91, no. 7, pp. 3854–3868, (1989). DOI: https://doi.org/10.1063/1.456870
[17]. K. Hilpert and R. Ruthardt, “Determination of the dissociation energy of the Cr2 molecule,” Berichte der Bunsengesellschaft für physikalische Chemie, vol. 91, no. 7, pp. 724–731, (1987). DOI: https://doi.org/10.1002/bbpc.19870910707
[18]. D. Bandyopadhyay, “Architectures, electronic structures, and stabilities of Cu-doped Gen clusters: density functional modeling,” Journal of Molecular Modeling, vol. 18, no. 8, pp. 3887–3902, (2012). DOI: https://doi.org/10.1007/s00894-012-1374-7