Transition metal chalcogenides and phosphides: Synthesis and Photocatalytic properties

234 views

Authors

  • Nguyen Thanh Tung (Corresponding Author) Institute of Materials Science, Vietnam Academy of Science and Technology
  • Dao Son Lam Institute of Materials Science, Vietnam Academy of Science and Technology
  • Nguyen Hoang Tung Institute of Materials Science, Vietnam Academy of Science and Technology
  • Bui Thi Hoa Institute of Materials Science, Vietnam Academy of Science and Technology
  • Do Hung Manh Institute of Materials Science, Vietnam Academy of Science and Technology
  • Nguyen Tien Thanh Institute of Materials Science, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.89.2023.3-14

Keywords:

Catalytic materials; Water splitting; Transition metal materials.

Abstract

Currently, the interest in developing renewable and clean hydrogen energy sources is increasing in both quantity and quality. Hydrogen is considered a potential clean and safe fuel for the environment, which is considered to be a solution that will overcome the current dependence on petroleum-based ones. The generation of hydrogen through inexhaustible resources such as water and solar energy has been receiving more and more attention. Solar-powered water-splitting methods are considered a new approach to produce long-lasting, efficient hydrogen. Numerous studies are focusing on developing photocatalysts for the production of hydrogen from water. Most of the explored and used photocatalysts have high catalytic activity and good stability, low cost for electrochemical reactions in water splitting and fuel cells. In this report, we review selected recent advances for several photocatalysts using transition metal materials dichalcogenides and phosphides. This study will focus on analyzing related issues including fabrication methods and their applications in (photo)electrochemical water splitting.

References

[1]. Ahmad, I.; Arther, S.; Khan, R. Int. J. Hydrog. Energy, 43, 6011–6039, (2018). DOI: https://doi.org/10.1016/j.ijhydene.2018.01.113

[2]. Fadojutimi, P.O.; Gqoba, S.S.; Tetana, Z.N.; Moma, J. Catalysts, 12, 468, (2022). DOI: https://doi.org/10.3390/catal12050468

[3]. Fujishima, A.; Honda, K.; Kikuchi, S.. Kogyo Kagaku Zasshi, 72, 108–113, (1969). DOI: https://doi.org/10.1246/nikkashi1898.72.108

[4]. Peng, W.; Li, Y.; Zhang, F.; Zhang, G.; Fan, X.. Ind. Eng. Chem. Res. 56, 4611–4626, (2017). DOI: https://doi.org/10.1021/acs.iecr.7b00371

[5]. Zhang, N.; Zhang, Y.; Pan, X.; Yang, M.-Q.; Xu, Y.-J.. J. Phys. Chem. C, 116, 18023–18031, (2012). DOI: https://doi.org/10.1021/jp303503c

[6]. Du, J.; et al. Ceram. Int. 44, 3099–3106, (2018). DOI: https://doi.org/10.1016/j.ceramint.2017.11.075

[7]. Fu, L.; et al.. Adv. Mater. 29, 1700439–1700446, (2017). DOI: https://doi.org/10.1002/adma.201700439

[8]. Pihosh, Y. et al.. Sci. Rep. 5, 11141, (2015). DOI: https://doi.org/10.1038/srep11141

[9]. Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z.. ACS Catal. 8, 2253–2276, (2018). DOI: https://doi.org/10.1021/acscatal.7b03437

[10]. Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S.Z.. Chem. Soc. Rev. 43, 7787–7812, (2014). DOI: https://doi.org/10.1039/C3CS60425J

[11]. Sumesh, C.K.; Peter, S.C.. Dalton Trans. 34, 12772–12802., (2019). DOI: https://doi.org/10.1039/C9DT01581G

[12]. Kumaravel, V. et al.Catalysts, 9, 276, (2019). DOI: https://doi.org/10.3390/catal9030276

[13]. Jeong, S. et al. Chem. Mater. 28, 1965–1974, (2016). DOI: https://doi.org/10.1021/acs.chemmater.6b00430

[14]. Yan, C. et al.. Adv. Funct. Mater. 28, 1803305, (2018). DOI: https://doi.org/10.1002/adfm.201803305

[15]. Singh, A.K. et al.. Appl. Mater. Today, 13, 242–270, (2018). DOI: https://doi.org/10.1016/j.apmt.2018.09.003

[16]. Rahmanian, E.; Malekfar, R.; Pumera, M.. Chem. Eur. J. 24, 18–31, (2018). DOI: https://doi.org/10.1002/chem.201703434

[17]. Novoselov, K.S. et al. Proc. Natl. Acad. Sci. USA, 102, 10451–10453, (2005). DOI: https://doi.org/10.1073/pnas.0502848102

[18]. Coleman, J.N.; et al.. Science, 331, 568–571, (2011).

[19]. Sherrell, P.C. et al. ACS Omega, 3, 8655–8662, (2018). DOI: https://doi.org/10.1021/acsomega.8b00766

[20]. O’Brien, M. et al.. Sci. Rep. 6, 19476, (2016).

[21]. Zhang, M.; et al.. J. Am. Chem. Soc. 137, 7051–7054, (2015). DOI: https://doi.org/10.1021/jacs.5b03807

[22]. Liu, E.; et al. Nat. Commun. 6, 6991, (2015).

[23]. Pawbake, A.S.; Pawar, M.S.; Jadkar, S.R.; Late, D.J.. Nanoscale, 8, 3008–3018, (2016). DOI: https://doi.org/10.1039/C5NR07401K

[24]. Zhang, Z. et al.. Nanotechnology, 30, 182002, (2019). DOI: https://doi.org/10.1088/1361-6528/aaff19

[25]. Wen, Y.; Zhu, Y.; Zhang, S.. RSC Adv. 5, 66082–66085, (2015). DOI: https://doi.org/10.1039/C5RA12412C

[26]. Muhammad, Z.; et al. Nano Res. 11, 4914–4922, (2018). DOI: https://doi.org/10.1007/s12274-018-2081-1

[27]. You, J.; Hossain, D.; Luo, Z.. Nano Converg. 5, 26–32, (2018). DOI: https://doi.org/10.1186/s40580-018-0158-x

[28]. Tenne, R.. Angew. Chem. Int. Ed. 42, 5124–5132, (2003). DOI: https://doi.org/10.1002/anie.200301651

[29]. Tan, C.; Zhang, H.. Nat. Commun. 6, 7873, (2015). DOI: https://doi.org/10.1038/ncomms8873

[30]. Mansouri, A.; Semagina, N.. ACS Appl. Nano Mater. 1, 4408–4412, (2018). DOI: https://doi.org/10.1021/acsanm.8b01353

[31]. Razgoniaeva, N. et al. Just Add Ligands:. Chem. Mater. 30, 1391–1398, (2018). DOI: https://doi.org/10.1021/acs.chemmater.7b05165

[32]. Qiao, L.; Swihart, M.T.. Adv. Colloid Interface Sci. 244, 199–266, (2017). DOI: https://doi.org/10.1016/j.cis.2016.01.005

[33]. Rajput, N.. Int. J. Adv. Eng. Technol. 7, 1806–1811, (2015).

[34]. Zheng, W. et al.. Adv. Funct. Mater. 26, 6371–6379, (2016). DOI: https://doi.org/10.1002/adfm.201602494

[35]. Marco Vittorio, N.; et al. ACS Appl. Mater. Interfaces, 10, 34392–34400, (2018). DOI: https://doi.org/10.1021/acsami.8b12596

[36]. Guo, X.; Yin, P.; Wang, Z.; Yang, H.. J. Sol-Gel Sci. Technol. 85, 140–148, (2017). DOI: https://doi.org/10.1007/s10971-017-4531-8

[37]. Thiagarajan, S.; Anandhavelu, S.; Vikraman, D.; Books on Demand: Norderstedt, Germany, (2017).

[38]. Rosman, N.N.; et al. Int. J. Hydrog. Energy, 43, 18925–18945, (2018). DOI: https://doi.org/10.1016/j.ijhydene.2018.08.126

[39]. Chen, Y.; Sun, H.; Peng, W.. Nanomaterials, 7, 62, (2017). DOI: https://doi.org/10.3390/nano7030062

[40]. Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H.. Adv. Mater. 28, 1917–1933, (2015). DOI: https://doi.org/10.1002/adma.201503270

[41]. Ma, S.; Xie, J.; Wen, J.; He, K.; Li, X.; Liu, W.; Zhang, X.. Appl. Surf. Sci. 391, 580–591, (2016). DOI: https://doi.org/10.1016/j.apsusc.2016.07.067

[42]. Chang, K. et al. Adv. Energy Mater. 10, 1402279, (2015). DOI: https://doi.org/10.1002/aenm.201402279

[43]. Li, H. et al. Nanoscale, 8, 6101–6109, (2016). DOI: https://doi.org/10.1039/C5NR08796A

[44]. Zhang, P.; Tachikawa, T.; Fujitsuka, M.; Majima, T.. Chem. Commun. 51, 7187–7190, (2015). DOI: https://doi.org/10.1039/C5CC01753J

[45]. Dong, Z. et al. IOP Conf. Ser. Earth Environ. Sci. 189, 032042, (2018). DOI: https://doi.org/10.1088/1755-1315/189/3/032042

[46]. Feng, H.; Zhou, W.; Zhang, X.; Zhang, S.; Liu, B.; Zhen, D.. Adv. Compos. Lett. 28, (2019). DOI: https://doi.org/10.1177/2633366X19895020

[47]. Yuan, Y.-J.; Wang, F.; Hu, B.; Lu, H.-W.; Yu, Z.-T.; Zou, Z.-G.. Dalton Trans. 44, 10997, (2015). DOI: https://doi.org/10.1039/C5DT00906E

[48]. Chang, Y.C.; Lin, Y.W.; Lu, M.Y.. Mater. Chem. Phys. 266, 124560, (2021). DOI: https://doi.org/10.1016/j.matchemphys.2021.124560

[49]. Khalid, N.R.; Israr, Z.; Tahir, M.B.; Iqbal, T.H.. Int. J. Hydrog. Energy, 15, 8479–8489, (2020). DOI: https://doi.org/10.1016/j.ijhydene.2020.01.031

[50]. Swain, G.; Sultana, S.; Naik, B.; Parida, K.. ACS Omega, 2, 3745–3753, (2017). DOI: https://doi.org/10.1021/acsomega.7b00492

[51]. P. Yu et al. Nano Energy, 58, 244-276, (2019). DOI: https://doi.org/10.1016/j.nanoen.2019.01.017

[52]. M. Sun, H. Liu, J. Qu, J. Li,. Adv. Energy Mater. 6, 1600087, (2016). DOI: https://doi.org/10.1002/aenm.201600087

[53]. J. F. Callejas et al.. Chem. Mater. 28, 6017-6044, (2016). DOI: https://doi.org/10.1021/acs.chemmater.6b02148

[54]. J. F. Callejas et al. ACS Nano, 8, 11101-11107, (2014). DOI: https://doi.org/10.1021/nn5048553

[55]. E. J. Popczun et al. Angew. Chem. Int. Ed. 53, 5427-5430, (2014). DOI: https://doi.org/10.1002/anie.201402646

[56]. E. J. Popczun et al. J. Am. Chem. Soc. 135, 9267-9270, (2013). DOI: https://doi.org/10.1021/ja403440e

[57]. Weng, C.-C., Ren, J.-T., & Yuan, Z.-Y.. ChemSusChem. (2020).

[58]. G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu, J. Li,. J. Am. Chem. Soc. 138, 14686-14693, (2016). DOI: https://doi.org/10.1021/jacs.6b08491

[59]. H. Tabassum et al. Adv. Energy Mater. 7, 1601671, (2017). DOI: https://doi.org/10.1002/aenm.201601671

[60]. X. Wang et al. Nano Energy, 62, 745-753, (2019). DOI: https://doi.org/10.1016/j.nanoen.2019.06.002

[61]. J. Xiao, Z. Y. Zhang, Y. Zhang, Q. Q. Lv, F. Jing, K. Chi, S. Wang,. Nano Energy, 51, 223, (2018). DOI: https://doi.org/10.1016/j.nanoen.2018.06.040

[62]. Q. Guan, W. Li,. J. Catal. 271, 413-415, (2010). DOI: https://doi.org/10.1016/j.jcat.2010.02.031

[63]. P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M. Asiri, X. Sun,. Angew. Chem. Int. Ed. 53, 12855, (2014). DOI: https://doi.org/10.1002/anie.201406848

[64]. Q. Liu et al.. Angew. Chem. Int. Ed. 53, 6710-6714, (2014). DOI: https://doi.org/10.1002/anie.201404161

[65]. Y. P. Zhu, Y. P. Liu, T. Z. Ren, Z. Y. Yuan,. Adv. Funct. Mater. 25, 7337-7347, (2015). DOI: https://doi.org/10.1002/adfm.201503666

[66]. F. H. Saadi et al. J. Phys. Chem. C, 118, 29294-29300, (2014). DOI: https://doi.org/10.1021/jp5054452

[67]. J. Jiang, et al.J. Mater. Chem. A, 3, 499-503, (2015). DOI: https://doi.org/10.1039/C4TA04758C

[68]. M. Pi, T. Wu, D. Zhang, S. Chen, S. Wang,. Nanoscale, 8, 19779-19786, (2016). DOI: https://doi.org/10.1039/C6NR05747K

[69]. X. Xiao et al. Chem. Sci. 9, 1970-1975, (2018). DOI: https://doi.org/10.1039/C7SC04849A

[70]. T. T. Liu et al. ACS Catal. 7, 98-102, (2017). DOI: https://doi.org/10.1021/acscatal.6b02849

[71]. Y. Men, P. Li, F. Yang, G. Cheng, S. Chen, W. Luo, Appl. Catal. B Environ. 253, 21-27, (2019). DOI: https://doi.org/10.1016/j.apcatb.2019.04.038

[72]. K. Liang, et al., ACS Catal. 9, 651-659, (2019). DOI: https://doi.org/10.1021/acscatal.8b04291

[73]. L. Wen et al. ACS Appl. Energy Mater. 1, 3835-3842, (2018). DOI: https://doi.org/10.1021/acsaem.8b00609

[74]. A. Wu et al. ACS Appl. Mater. Interfaces, 11, 25986-25995, (2019). DOI: https://doi.org/10.1021/acsami.9b07415

[75]. L. Yu, H. Hu, H. Wu, X. Lou, Adv. Mater. 29, 1604563, (2017). DOI: https://doi.org/10.1002/adma.201604563

[76]. L.-A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci. 8, 2347-2351, (2015). DOI: https://doi.org/10.1039/C5EE01155H

[77]. H. Liang, et al. ACS Energy Lett. 2, 1035-1042, (2017). DOI: https://doi.org/10.1021/acsenergylett.7b00206

Published

25-08-2023

How to Cite

Nguyen Thanh, P. T., Đào Sơn Lâm, Nguyễn Hoàng Tùng, Bùi Thị Hoa, Đỗ Hùng Mạnh, and Nguyễn Tiến Thành. “Transition Metal Chalcogenides and Phosphides: Synthesis and Photocatalytic Properties”. Journal of Military Science and Technology, vol. 89, no. 89, Aug. 2023, pp. 3-14, doi:10.54939/1859-1043.j.mst.89.2023.3-14.

Issue

Section

Overview

Categories