Development of an epoxy-based intumescent retardant coatings comprising of different fillers for steel structure
335 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.87.2023.70-77Keywords:
Intumescent coating; Epoxy; Fire retardant filler; Steel structure.Abstract
Intumescent coating is one of the useful methods to protect steel structures under fire conditions. In this study, the influence of single and hybrid two or three flame-retardant fillers among TiO2, Al(OH)3, and Mg(OH)2 on paints containing ammonium polyphosphate (APP), melamine (MEL), pentaerythritol (PER) based on the epoxy resin was investigated to improve the fire protection performance of the intumescent coatings. The performances of the intumescent coatings were determined by a fire test at 950 oC for 1 hour. The coating degradation was characterized by Thermal gravimetric analysis (TGA). The morphology and composition of the char after the fire test were studied by Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray spectra (EDS). The results revealed that Al(OH)3 or combination of Al(OH)3 and TiO2 are the effective solution to increase fire protective performances of the epoxy-based intumescent coatings.
References
[1]. S. Duquesne, S. Magnet, C. Jama, R. Delobel, “Intumescent Paints: Fire protective coating for metallic substrates,” Surf. Coat. Technol., Vol. 180-181, pp. 302-307, (2004). DOI: https://doi.org/10.1016/j.surfcoat.2003.10.075
[2]. R. G. Puri, A. S. Khanna, “Intumescent coatings: A review on recent progress,” J. Coat. Technol. Res., Vol. 14, No. 1, pp. 1-20, (2017). DOI: https://doi.org/10.1007/s11998-016-9815-3
[3]. Y. M. Evtushenko, Y. A. Grigoriev, T. A. Rudakova, A. N. Ozerin, “Effect of aluminum hydroxide on the fireproofing properties of ammonium polyphosphate-pentaerythritol-based intumescent coating,”. J. Coat. Technol. Res., Vol. 16, No.5, pp. 1389–1398, (2019). DOI: https://doi.org/10.1007/s11998-019-00221-6
[4]. R. G. Puri, A. S. Khanna, “Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel,”, Prog. Org. Coat., Vol. 92, pp. 8-15, (2016). DOI: https://doi.org/10.1016/j.porgcoat.2015.11.016
[5]. S. Ullah, F. Ahmad, A. M. Shariff, M. A. Bustam, “Synergistic effects of kaolin clay on intumescent fire-retardant coating composition for fire protection of structural steel substrate,”. Plym. Degrad. Stab., Vol. 110, pp. 91-103, (2014). DOI: https://doi.org/10.1016/j.polymdegradstab.2014.08.017
[6]. Y. X. Lee, F. Ahmad, S. Kabir, P. J. Masset, E. Onate, G. H. Yeoh, “Synergistic effects of halloysite clay and zirconium phosphate on thermal behavior of intumescent coating,” J. Mater. Res. and Technol. Vol. 18, pp. 4456-4469, (2022). DOI: https://doi.org/10.1016/j.jmrt.2022.04.097
[7]. J. B. Zoleta, G. B. Itao, V. J. T. Resabal, A. A. Lubguban, R. D. Corpuz, M. Ito, N. Hiroyoshi, C. B. Tabelin, “Improved pyrolysis behavior of ammonium polyphosphate-melamine-expandable (APP-MEL-EG) intumescent fire-retardant coating system using ceria and dolomite as additives for I-beam steel application,” Heliyon, Vol. 6, pp. e03119, (2020). DOI: https://doi.org/10.1016/j.heliyon.2019.e03119
[8]. M. C. Yew, N. H. R. Sulong, M. K. Yew, M. A. Amalina, M. R. Johan, “Influences of flame-retardant fillers on the fire protection and mechanical properties of intumescent coating,” Prog. Org. Coat. Vol. 78, pp. 59-66, (2015). DOI: https://doi.org/10.1016/j.porgcoat.2014.10.006
[9]. M. Yasir, F. Ahmad, P. S. M. Megat-Yusoff, S. Ullah, M. Jimenez, “Quantifying the effects of basalt fibers on thermal degradation and fire performance of epoxy-based intumescent coating for fire protection of steel substrate,” Prog. Org. Coat. Vol. 132, pp. 148-158, (2019). DOI: https://doi.org/10.1016/j.porgcoat.2019.03.019
[10]. J. Kaur, F. Ahmad, S. Ullah, P.S.M. Megat Yusoff, R. Ahmad, “The role of Bentonite clay on improvement in char adhesion of intumescent fire-retardant coating with steel substrate,” Arab J. Sci. Eng., Vol. 42, pp. 2043-2053, (2017). DOI: https://doi.org/10.1007/s13369-017-2423-4
[11]. Z. Wang, E. Hab, W. Ke, “Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating,” Prog. Org. Coat., Vol. 53, No. 1, pp. 29-37, (2005). DOI: https://doi.org/10.1016/j.porgcoat.2005.01.004
[12]. G. Wang, J. Yang, “Influence of glass flakes on the fire protection and water resistance of waterborne intumescent fire resistive coating for steel structure,” Prog. Org. Coat., Vol. 70 No. 2-3, pp. 150-156, (2011). DOI: https://doi.org/10.1016/j.porgcoat.2010.10.007
[13]. A. M. Zia-ul-Mustafa, F. Ahmad, S. Ullah, N. Amir, Q.F. Gillani, “Thermal and pyrolysis analysis of minerals reinforced intumescent fire-retardant coating”, Prog. Org. Coat., Vol. 102, pp. 201-216, (2017). DOI: https://doi.org/10.1016/j.porgcoat.2016.10.014
[14]. C. Feng, M. Liang, W. Chen, J. Huang, H. Liu, “Flame retardancy and thermal degradation of intumescent flame-retardant EVA composite with efficient charring agent,” J. Anal. Appl. Pyrolysis, Vol. 113, pp. 266-273, (2015). DOI: https://doi.org/10.1016/j.jaap.2015.01.021
[15]. E. Stavitski, “Infrared spectroscopy on powder catalysts in-situ characterization of a heterogeneous catalyst,” John Wiley Sons Inc., New Jersey, pp. 241-265, (2013). DOI: https://doi.org/10.1002/9781118355923.ch9
[16]. C.S. Chuang, H.J. Sheen, “Effects of added nanoclay for styrene-acrylic resin on intumescent fire retardancy and CO/CO2 emission,” J. Coat. Technol. Res., Vol. 17, pp.115-125, (2019). DOI: https://doi.org/10.1007/s11998-019-00246-x