Enhancing photocatalytic degradation of methylene blue by TiO2-CeO2 heterostructure under visible light irradiation

46 views

Authors

  • Vu Thi Nga Department of Chemistry, College of Education, Vinh University
  • Le The Tam School of Chemistry, Biology and Environment, Vinh University
  • Nguyen Hoa Du Department of Chemistry, College of Education, Vinh University
  • Nguyen Hoang Hao Department of Chemistry, College of Education, Vinh University
  • Le Thi Thu Hiep Centre for Practice and Experiment, Vinh University
  • Chu Thi Thanh Lam Centre for Practice and Experiment, Vinh University
  • Nguyen Thi Kim Chung Centre for Practice and Experiment, Vinh University
  • Nguyen Le Khanh Huyen Phan Boi Chau High School for Gifted, Vinh City, Nghe An
  • Ho Thi Van Suong School of Chemistry, Biology and Environment, Vinh University
  • Nguyen Thi Quynh Department of Chemistry, College of Education, Vinh University
  • Ho Dinh Quang (Corresponding Author) Department of Chemistry, College of Education, Vinh University

DOI:

https://doi.org/10.54939/1859-1043.j.mst.93.2024.99-105

Keywords:

TiO2 nanoparticles; TiO2-CeO2 heterostructure; Methylene blue and photocatalytic degradation.

Abstract

TiO2-CeO2 heterostructure was synthesized by a simple hydrothermal technique, with an average particle size of 21 nm, and high uniformity from the common precursors. For the characterization of the catalyst properties, the techniques of X-ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), and Transmission Electron Microscopes (TEM) were used. The TiO2-CeO2 heterostructure exhibited higher photocatalytic activity than TiO2 in the removal of methylene blue (MB) dye under visible light irradiation. The combination of TiO2-CeO2 facilitated electron pathways, creating favorable conditions for efficient separation of electron-hole pairs and enhancing the photocatalytic activity of the material. The TiO2-CeO2 heterostructure demonstrated rapid and highly efficient photodegradation of methylene blue, achieving an 89.79% removal rate after 120 minutes of irradiation. This performance, coupled with enhanced visible light utilization, suggests wide applications in the field of photocatalysis.

References

[1]. B. Lellis, C. Z. Fávaro-Polonio, J. A.r Pamphile, J. C. Polonio, “Effects of textile dyes on health and the environment and bioremediation potential of living organisms,” Biotechnology Research and Innovation,Vol. 3, No. 2, pp.275-290, (2019). DOI: https://doi.org/10.1016/j.biori.2019.09.001

[2]. C. Chen, Z. Wang, S. Ruan, B. Zou, M. Zhao, F. Wu, “Photocatalytic degradation of C.I. Acid Orange 52 in the presence of Zn-doped TiO2 prepared by a stearic acid gel method,” Dyes and Pigments, Vol. 77, No. 1, pp. 204-209, (2008). DOI: https://doi.org/10.1016/j.dyepig.2007.05.003

[3]. L. Maknun, Nazriati, I. Farida, N. Kholila, R.B. Muyas Syufa, “Synthesis of silica xerogel based bagasse ash as a methylene blue adsorbent on textile waste,” Journal of Physics: Conference Series, Vol. 1093, No. 1, pp. 1-5, (2018). DOI: https://doi.org/10.1088/1742-6596/1093/1/012050

[4]. M. S. Mahmoud, J. Y. Farah, T. E. Farrag, “Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes,” Egyptian Journal of Petroleum, Vol. 22, No. 1, pp. 211-216, (2013). DOI: https://doi.org/10.1016/j.ejpe.2012.09.013

[5]. S. R. Geed, K. Samal, A. Tagade, “Development of adsorption-biodegradation hybrid process for removal of methylene blue from wastewater,” Journal of Environmental Chemical Engineering, Vol. 7, No. 6, pp.1-20, (2019). DOI: https://doi.org/10.1016/j.jece.2019.103439

[6]. G. Fadillah, T. A. Saleh, S. Wahyuningsih, E. N. K. Putri, S. Febrianastuti, “Electrochemical removal of methylene blue using alginate-modified graphene adsorbents,” Chemical Engineering Journal, Vol. 378, No. 12, pp. 122140, (2019). DOI: https://doi.org/10.1016/j.cej.2019.122140

[7]. N. Madkhali, C.Prasad, K. Malkappa, H. Y. Choi, V. Govinda, I. Bahadur, R.A. Abumousa, “Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials,” Results in Engineering, Vol. 17, No.3, pp.100920, (2023). DOI: https://doi.org/10.1016/j.rineng.2023.100920

[8]. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, “Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review,” Journal of Cleaner Production, Vol. 268, No.9, pp. 121725, (2020). DOI: https://doi.org/10.1016/j.jclepro.2020.121725

[9]. D. Jiang et al., “A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants,” Catalysts, Vol. 11, No. 9, pp.1039, (2021). DOI: https://doi.org/10.3390/catal11091039

[10]. D T. M. Wandre, P. N. Gaikwad, A. S. Tapase, K. M. Garadkar, S. A. Vanalakar, P. D. Lokhande, R. Sasikala, P. P. Hankare, “Sol-gel synthesized TiO2-CeO2 nanocomposite: an efficient photocatalyst for degradation of methyl orange under sunlight,” Journal of Materials Science: Materials in Electronics, Vol. 27, pp. 825-833, (2026). DOI: https://doi.org/10.1007/s10854-015-3823-4

[11]. E. Kusmierek, “A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review,” Catalysts, Vol. 10, No.12, pp.1435, (2020). DOI: https://doi.org/10.3390/catal10121435

[12]. J. Wang, F. Meng, W. Xie, C. Gao, Y. Zha, D. Liu, P. Wang, “TiO2/CeO2 composite catalysts: synthesis, characterization and mechanism analysis,” Applied Physics A, Vol. 124, No. 645, pp.1-6, (2018). DOI: https://doi.org/10.1007/s00339-018-2027-1

[13]. N. Sofyan, A. Ridhova, A. H. Yuwono, A.Udhiarto, “Preparation of anatase TiO2 nanoparticles using low hydrothermal temperature for dye-sensitized solar cell,” IOP Conference Series: Materials Science and Engineering, Vol. 316, pp. 012055, (2018). DOI: https://doi.org/10.1088/1757-899X/316/1/012055

[14]. S. B. Khan, M. Faisal, M. M. Rahman, A. Jamal, “Exploration of CeO2 nanoparticles as a chemi-sensor and photocatalyst for environmental applications,” Science of The Total Environment, Vol. 409, No. 15, pp. 2987-2992, (2011). DOI: https://doi.org/10.1016/j.scitotenv.2011.04.019

[15]. Z. Fan, F. Meng, J. Gong, H. Li, Y. Hu, D. Liu, “Enhanced photocatalytic activity of hierarchical flower-like CeO2/TiO2 heterostructures,” Materials Letters, Vol. 175, pp. 36-39, (2016). DOI: https://doi.org/10.1016/j.matlet.2016.03.136

[16]. A. O. Bokuniaeva, A. S. Vorokh, “Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder,” Journal of Physics: Conference Series, Vol. 1410, pp. 012057, (2019). DOI: https://doi.org/10.1088/1742-6596/1410/1/012057

[17]. P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, “Structural, optical and morphological analyses of pristine titanium dioxide nanoparticles-synthesized via sol-gel route,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 117, No.1, p. 622-629, (2014). DOI: https://doi.org/10.1016/j.saa.2013.09.037

[18]. E. Wang et al., “Unique surface chemical species on indium doped TiO2 and their effect on the visible light photocatalytic activity,” The Journal of Physical Chemistry C, 113(49), 20912–20917. DOI: https://doi.org/10.1021/jp9041793

[19]. M. Malekkiani et al., “Fabrication of graphene-based TiO2@CeO2 and CeO2@TiO2 core–shell heterostructures for enhanced photocatalytic activity and cytotoxicity,” ACS Omega, Vol. 7, No. 34, pp.30601-30621, (2022). DOI: https://doi.org/10.1021/acsomega.2c04338

Downloads

Published

25-02-2024

How to Cite

Vu, T. N., T. T. Le, H. D. Nguyen, H. H. Nguyễn, T. T. H. Le, T. T. L. Chu, T. K. C. Dau, L. K. H. Nguyen, T. V. S. Ho, T. Q. Nguyen, and D. Q. Ho Dinh. “Enhancing Photocatalytic Degradation of Methylene Blue by TiO2-CeO2 Heterostructure under Visible Light Irradiation”. Journal of Military Science and Technology, vol. 93, no. 93, Feb. 2024, pp. 99-105, doi:10.54939/1859-1043.j.mst.93.2024.99-105.

Issue

Section

Research Articles

Categories