Design of uncertainty observation for speed sensorless control system of permanent magnet synchronous motor

208 views

Authors

  • Hoang Nam Dan Hanoi University of Science and Technology
  • Nguyen Thanh Thang Hanoi University of Science and Technology
  • Le Duc Thinh Hanoi University of Science and Technology
  • Vo Thanh Ha University of Transport and Communications
  • Nguyen Tung Lam (Corresponding Author) Hanoi University of Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.FEE.2023.84-91

Keywords:

PMSM; FOC; Backstepping; SMO; Matlab; Simulink.

Abstract

This article presents anti-interference for the permanent magnet synchronous motor (PMSM) speed control system by the rotor flux quasi (FOC) method using the Backstepping controller. The SMO observer (Sliding-mode observer) estimates the value of the electromotive force in the stator coordinate system and then passes through a phase-locked loop (PLL) to calculate the speed, rotor position, reaction, and feedback to the controller. In addition, the uncertainty components caused by load torque and parameter variations also significantly affect rate and current deviations, causing the controller not to achieve the desired results. The paper's main contribution is the noise observer and the engine's uncertain components, which help significantly improve the system's quality. Finally, perform the simulation on Matlab/Simulink software and evaluate the results.

References

[1]. W. Cai, X. Wu, M. Zhou, Y. Liang, and Y. Wang, “Review and Development of Electric Motor Systems and Electric Powertrains for New Energy Vehicles,” Automotive Innovation, vol. 4, no. 1, pp. 3–22, (2021), doi: 10.1007/s42154-021-00139-z. DOI: https://doi.org/10.1007/s42154-021-00139-z

[2]. L. Yu, C. Wang, H. Shi, R. Xin, and L. Wang, “Simulation of PMSM field-oriented control based on SVPWM,” Proceedings of the 29th Chinese Control and Decision Conference, CCDC 2017, no. 1, pp. 7407–7411, (2017), doi: 10.1109/CCDC.2017.7978524. DOI: https://doi.org/10.1109/CCDC.2017.7978524

[3]. X. Wang, N. Liu, and R. Na, “Simulation of PMSM field-oriented control based on SVPWM,” 5th IEEE Vehicle Power and Propulsion Conference, VPPC ’09, no. 4, pp. 1465–1469, (2009), doi: 10.1109/VPPC.2009.5289523. DOI: https://doi.org/10.1109/VPPC.2009.5289523

[4]. S. Zheng, X. Tang, B. Song, S. Lu, and B. Ye, “Stable adaptive PI control for permanent magnet synchronous motor drive based on improved JITL technique,” ISA Trans, vol. 52, no. 4, pp. 539–549, (2013), doi: 10.1016/j.isatra.2013.03.002. DOI: https://doi.org/10.1016/j.isatra.2013.03.002

[5]. B. Zigmund, A. Terlizzi, X. T. Garcia, R. Pavlanin, and L. Salvatore, “Experimental evaluation of PI tuning techniques for field oriented control of permanent magnet synchronous motors,” Advances in electrical and electronic engineering, vol. 5, no. 3, pp. 114–119, (2006).

[6]. L. Sun, X. Zhang, L. Sun, and K. Zhao, “Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques,” IEEE Trans Power Electron, vol. 28, no. 3, pp. 1358–1365, (2013), doi: 10.1109/TPEL.2012.2206610. DOI: https://doi.org/10.1109/TPEL.2012.2206610

[7]. S. Niu, Y. Luo, W. Fu, and X. Zhang, “Robust Model Predictive Control for a Three-Phase PMSM Motor with Improved Control Precision,” IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 838–849, (2021), doi: 10.1109/TIE.2020.3013753. DOI: https://doi.org/10.1109/TIE.2020.3013753

[8]. C. X. Chen, Y. X. Xie, and Y. H. Lan, “Backstepping control of speed sensorless permanent magnet synchronous motor based on slide model observer,” International Journal of Automation and Computing, vol. 12, no. 2, pp. 149–155, (2015), doi: 10.1007/s11633-015-0881-2. DOI: https://doi.org/10.1007/s11633-015-0881-2

[9]. J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, and O. D. Ramírez-Cárdenas, “Robust Backstepping Tracking Controller for Low-Speed PMSM Positioning System: Design, Analysis, and Implementation,” IEEE Trans Industr Inform, vol. 11, no. 5, pp. 1130–1141, (2015), doi: 10.1109/TII.2015.2471814. DOI: https://doi.org/10.1109/TII.2015.2471814

[10]. A. T. Nguyen, B. A. Basit, H. H. Choi, and J. W. Jung, “Disturbance Attenuation for Surface-Mounted PMSM Drives Using Nonlinear Disturbance Observer-Based Sliding Mode Control,” IEEE Access, vol. 8, pp. 86345–86356, (2020), doi: 10.1109/ACCESS.2020.2992635. DOI: https://doi.org/10.1109/ACCESS.2020.2992635

[11]. H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4069–4077, 2011, doi: 10.1109/TIE.2010.2098357. DOI: https://doi.org/10.1109/TIE.2010.2098357

[12]. S. M. Kazraji, R. B. Soflayi, and M. B. B. Sharifian, “Sliding-Mode Observer for Speed and Position Sensorless Control of Linear-PMSM,” Electrical, Control and Communication Engineering, vol. 5, no. 1, pp. 20–26, (2014), doi: 10.2478/ecce-2014-0003. DOI: https://doi.org/10.2478/ecce-2014-0003

[13]. C. Yang et al., “Research about the Sensorless Vector Control of Permanent Magnet Synchronous Motor Based on Two-stage Filter Sliding Mode Observer,” IOP Conf Ser Earth Environ Sci, vol. 701, no. 1, (2021), doi: 10.1088/1755-1315/701/1/012016. DOI: https://doi.org/10.1088/1755-1315/701/1/012016

[14]. S. Sensorless, C. Of, P. Magnet, S. Motors, and U. S. Observer, “Speed sensorless control of permanent magnet synchronous motors using sliding-mode observer,” Journal of Science and Technology - HaUI, vol. 59, no. 2A, pp. 101–105, (2023), doi: 10.57001/huih5804.2023.048. DOI: https://doi.org/10.57001/huih5804.2023.048

Published

10-12-2023

How to Cite

Hoàng Nam Đàn, Nguyễn Thanh Thắng, Lê Đức Thịnh, Võ Thanh Hà, and Nguyễn Tùng Lâm. “Design of Uncertainty Observation for Speed Sensorless Control System of Permanent Magnet Synchronous Motor”. Journal of Military Science and Technology, no. FEE, Dec. 2023, pp. 84-91, doi:10.54939/1859-1043.j.mst.FEE.2023.84-91.

Issue

Section

Research Articles

Most read articles by the same author(s)