Enhancing the kinematic quality of a single-axis stabilizing platform on a high-speed spinning-body aircraft
DOI:
https://doi.org/10.54939/1859-1043.j.mst.106.2025.10-17Keywords:
Stabilizing platform; Attitude determination; Spinning aircraft; Vibration absorber.Abstract
Within the orientation system, a single-axis stabilizing platform is employed to mitigate the effects of high-speed aircraft body rotation on the sensors. To analyze its kinematic characteristics, this paper develops a dynamic model of the stabilizing platform's motion. Misalignment between the platform's axis and the rotational axis of the spinning-body aircraft introduces disturbance components that affect stabilization quality. This paper proposes a solution to reduce platform oscillations by employing a viscous vibration absorber. Simulation results using MATLAB Simulink clearly demonstrate the effectiveness of this approach.
References
[1]. Chenming Zhang, Jie Li, “Semi-Strapdown Inertial Navigation System,” Sensors, vol. 19, 1683, (2019). doi: 10.3390/s19071683.
[2]. Jiayu Zhang, Jie Li, Xi Zhang, Xiaorui Che, “Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System,” Sensors, vol. 18, 1430, (2018). doi: 10.3390/s18051430.
[3]. Jie Li, Zhengyao Jing, Xi Zhang, Jiayu Zhang, Jinqiang Li, “Optimization Design Method of a New Stabilized Platform Based on Missile-Borne Semi-Strapdown Inertial Navigation System,” Sensors, vol. 18, 4412, (2018). doi: 10.3390/s18124412.
[4]. Zhengyao Jing, Jie Li, Xi Zhang, Kaiqiang Feng, Tao Zheng, “A Novel Rotation Scheme for MEMS IMU Error Mitigation Based on a Missile-Borne Rotation,” Sensors, vol. 19, 1683, (2019). doi: 10.3390/s19071683.
[5]. В.И. Бабичев, “Гироскопические приборы, разрабатываемые в АО «Конструкторское бюро приборостроения им. академика А.Г. Шипунова»,” Известия ТулГУ. Технические науки, (2021), вып. 10. doi: 10.24412/2071-6168-2021-10-28-37.
[6]. В.К. Асташев, В.И. Бабицкий, И.И. Быховский, И.И. Вульфсон, “Вибрации в технике: справочник. В 6 т. Т.6. Защита от вибраций и ударов”, под ред. К.В. Фролова. – М.: Машиностроение, 456 с, (1981).
[7]. В.Я. Распопов, “Становление и развитие гироскопии в Туле,” Известия ТулГУ. Технические науки, вып. 10, (2021). doi: 10.24412/2071-6168-2021-10-3-28.
[8]. В.Я. Распопов, “Бортовые гироприборы. Исторический обзор,” Гироскопия и навигация, т. 30, №2 (117), (2022).
[9]. Р.В. Алалуев, В.В. Лихошерст, В.В. Матвеев, В.Я. Распопов, А.П. Шведов, “Инерциальные измерители угловых параметров вращающихся летательных аппаратов,” Научно-технические разработки и их внедрение. Известия ТулГУ. Технические науки, вып. 10, (2016).