Geometries, stability and dissociation behavior of AgnCo clusters (n = 1-12): A theoretical investigation
286 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.86.2023.103-109Keywords:
Density functional theory; Silver clusters; Cobalt clusters; Dissociation energies.Abstract
The geometric structure, stability, dissociation channel and magnetism of AgnCo clusters (n = 1–12) have been studied using density functional theory. The results show that the Co atom tends to choose the highest coordination position. The ground state of AgnCo clusters prefers the planar motif at small sizes (n less than 4) but favors 3D structures at larger sizes (n = 5–12). The stability of clusters is not only governed by the symmetric geometry but also strongly depends on the electronic structure and the filling rule of the electron shells. The Ag9Co cluster with 18 valence electrons fully filled the electronic shell (1S21P63dCo10), which is considered as a potential superatom. The total magnetic moment of AgnCo clusters is governed by the electron localization on the Co atom. The relative stability of the clusters is determined by the average binding energy, the second-order difference energies, and the dissociation energies.
References
[1]. Medel, V.M., et al., ''Nature of Valence Transition and Spin Moment in AgnV+ Clusters", Journal of the American Chemical Society, 136, 8229-8236, (2014).
[2]. Ngo Thi Lam., et al., "DFT investigation of Au9M2+ nanoclusters (M = Sc-Ni): The magnetic superatomic behavior of Au9Cr2+", Chem. Phys. Lett., 793, 139451, (2022). DOI: https://doi.org/10.1016/j.cplett.2022.139451
[3]. A. Yang, W. Fa, J. Dong, "Magnetic Properties of Transition Metal Doped Tubular Gold Clusters: M@Au24 (M=V, Cr, Mn, Fe, Co and Ni)", J. Phys. Chem. A, 114, 4031, (2010). DOI: https://doi.org/10.1021/jp908511m
[4]. F. Alkan, A. Muñoz-Castro, C.M. Aikens, "Relativistic DFT Investigation of Electronic Structure Effects Arising from Doping the Au25 Nanocluster with Transition Metals", Nanoscale, 9, 15825, (2017). DOI: https://doi.org/10.1039/C7NR05214F
[5]. Zhang, M., et al., "Low-energy isomer identification, structural evolution, and magnetic properties in manganese-doped gold clusters MnAun (n= 1–16)", The Journal of Physical Chemistry A, 116 1493, (2012). DOI: https://doi.org/10.1021/jp2094406
[6]. Nguyen Minh Tam, Nguyen Thi Mai, Hung Tan Pham, Ngo Tuan Cuong and Nguyen Thanh Tung, "Ultimate Manipulation of Magnetic Moments in the Golden Tetrahedron Au20 with a Substitutional 3d Impurity", J. Phys. Chem. C 122, 16256, (2018). DOI: https://doi.org/10.1021/acs.jpcc.8b03378
[7]. Hou, X.-J., et al., "Theoretical study of the geometric and electronic structure of neutral and anionic doped silver clusters, Ag5X0,− with X= Sc, Ti, V, Cr, Mn, Fe, Co, and Ni", Chemical physics, 330, 379, (2006). DOI: https://doi.org/10.1016/j.chemphys.2006.09.007
[8]. Dong, R., et al., "Structural, electronic and magnetic properties of AgnFe clusters (n⩽ 15): local magnetic moment interacting with delocalized electrons", Journal of Physics B: Atomic, Molecular and Optical Physics, 44, 035102, (2011). DOI: https://doi.org/10.1088/0953-4075/44/3/035102
[9]. Harb, M., F. Rabilloud, and D. Simon, "Structural, electronic, magnetic and optical properties of icosahedral silver–nickel nanoclusters", Physical Chemistry Chemical Physics, 12 4246, (2010). DOI: https://doi.org/10.1039/b912971e
[10]. R. Xiong, D. Die, Y.G. Xu, B.X. Zheng, Y.C. Fu "Probing the Structural, Electronic and Magnetic Properties of AgnSc (n=1-16) Clusters", Phys. Chem. Chem. Phys., 20, 15824, (2018). DOI: https://doi.org/10.1039/C8CP02605J
[11]. Chakra P. Joshi, Megalamane S. Bootharaju, and Osman M. Bakr "Tuning Properties in Silver Clusters", J. Phys. Chem. Lett. 6, 15, 3023, (2015). DOI: https://doi.org/10.1021/acs.jpclett.5b00934
[12]. Xi Kang, Yingwei Li, Manzhou Zhu and Rongchao Jin, "Atomically precise alloy nanoclusters: syntheses, structures, and properties", Chem. Soc. Rev., 49, 6443, (2020). DOI: https://doi.org/10.1039/C9CS00633H
[13]. Huayan Yang, Yu Wang, Huaqi Huang, Lars Gell, Lauri Lehtovaara, Sami Malola, Hannu Häkkinen & Nanfeng Zheng, "All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures", Nature Communications 4, 2422, (2013). DOI: https://doi.org/10.1038/ncomms3422
[14]. Jie Yang, Runqiang Pang Dongpo Song and Man-Bo Li "Tailoring silver nanoclusters via doping: advances and opportunities", Nanoscale Adv., 3, 2411, (2021). DOI: https://doi.org/10.1039/D1NA00077B
[15]. Mokkath, J.H. and U. Schwingenschlögl, "Structural and optical properties of Si-doped Ag clusters", The Journal of Physical Chemistry C, 118, 4885, (2014). DOI: https://doi.org/10.1021/jp4112958
[16]. Zhao, G.-f., J.-m. Sun, and Z. Zeng, "Absorption spectra and electronic structures of AumAgn (m+ n= 8) clusters". Chemical Physics, 342, 267, (2007). DOI: https://doi.org/10.1016/j.chemphys.2007.10.019
[17]. Li, W. and F. Chen, "Alloying effect on performances of bimetallic Ag–Au cluster sensitized solar cells", Journal of Alloys and Compounds, 632, 845, (2015). DOI: https://doi.org/10.1016/j.jallcom.2015.01.306
[18]. Chang, L., H. Xu, and D. Cheng, "Role of ligand type on the geometric and electronic properties of Ag–Au bimetallic clusters". Computational and Theoretical Chemistry, 1045, 35, (2014). DOI: https://doi.org/10.1016/j.comptc.2014.06.023
[19]. Zhang, N., F. Chen, and X. Wu, "Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells", Scientific reports, 5, 1, (2015). DOI: https://doi.org/10.1038/srep11984
[20]. Ma, W. and F. Chen, "Optical and electronic properties of Cu doped Ag clusters", Journal of alloys and compounds, 541, 79, (2012). DOI: https://doi.org/10.1016/j.jallcom.2012.06.105
[21]. Sargolzaei, M., N. Lotfizadeh, "Spin and orbital magnetism of a single 3 d transition-metal atom doped into icosahedral coinage-metal clusters X12 (X= Cu, Ag, Au)", Physical Review B, 83, 155404, (2011). DOI: https://doi.org/10.1103/PhysRevB.83.155404
[22]. Zhang, M., et al., "Probing the magnetic and structural properties of the 3d, 4d, 5d impurities encapsulated in an icosahedral Ag12 cage", Physica B: Condensed Matter, 405, 642, (2010). DOI: https://doi.org/10.1016/j.physb.2009.09.080
[23]. Chen, L., et al., "Chemical coupling sers properties of pyridine on silver-caged metal clusters M@ Ag12 (M= V−, Nb−, Ta−, Cr, Mo, W, Mn+, Tc+, Re+)", Journal of Electronic Materials, 46, 3904, (2017). DOI: https://doi.org/10.1007/s11664-016-4993-4
[24]. Medel, V.M., et al., Nature of valence transition and spin moment in AgnV+ clusters. Journal of the American Chemical Society, 136, 8229, (2014). DOI: https://doi.org/10.1021/ja412064c
[25]. Gong, X., et al., "Spin–orbit Splitting and Magnetism of Icosahedral M@ Ag12 Clusters (M= 3d and 4d atoms)", Journal of Cluster Science, 26, 759, (2015). DOI: https://doi.org/10.1007/s10876-014-0737-x
[26]. Rodríguez-Kessler, P.L. and A.R. Rodríguez-Domínguez, "Structural, electronic, and magnetic properties of AgnCo (n=1–9) clusters: A first-principles study", Computational and Theoretical Chemistry, 1066, 55, (2015). DOI: https://doi.org/10.1016/j.comptc.2015.05.009
[27]. Frisch, M., et al., "Gaussian 09, revision D. 01. 2009", Gaussian, Inc., Wallingford CT, (2009).
[28]. Hohenberg, P. and W. Kohn, "Density functional theory (DFT)", Phys. Rev, 136, B864 (1964). DOI: https://doi.org/10.1103/PhysRev.136.B864
[29]. Simard, B., et al., "The bond length of silver dimer", Chemical physics letters, 186, 415, (1991). DOI: https://doi.org/10.1016/0009-2614(91)90201-J
[30]. Kant, A. and B. Strauss, "Dissociation energies of diatomic molecules of the transition elements. II. Titanium, chromium, manganese, and cobalt", The Journal of Chemical Physics, 41, 3806, (1964). DOI: https://doi.org/10.1063/1.1725817
[31]. Li, S.F., et al., "Role of Ag-doping in small transition metal clusters from first-principles simulations", The Journal of Chemical Physics, 131, 184301, (2009). DOI: https://doi.org/10.1063/1.3261728
[32]. Mai, N.T., et al., Systematic Investigation of the Structure, Stability, and Spin Magnetic Moment of CrMn Clusters (M = Cu, Ag, Au, and n = 2–20) by DFT Calculations", ACS Omega, 6, 20341, (2021). DOI: https://doi.org/10.1021/acsomega.1c02282