Ultrasound assisted synthesis of Fe3O4/Chitosan nanocomposites from Tay Nguyen red mud and kinetic study of Cr(VI) in aqueous solution
222 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.VITTEP.2022.62-71Keywords:
Red mud; Fe3O4/chitosan; Kinetics of Cr(VI) adsorption.Abstract
Red mud in the Central Highlands is the waste sludge of the process of aluminum production from bauxite ore by the Bayer method. This paper uses red mud from the Central Highlands combined with chitosan to fabricate Fe3O4/Chitosan magnetic nanocomposites by co-precipitation with the help of ultrasonic techniques. Characteristic properties of Fe3O4/Chitosan magnetic nanocomposites were evaluated by analytical methods X-ray Diffraction, FT-IR, FESEM and BET. Kinetics of Cr(VI) adsorption in an aqueous medium of Fe3O4/Chitosan nanocomposites was studied through Langmuir, Freundlich isotherm adsorption models and assumed first and second-order kinetic equations, diffusion kinetics, and Elovich equations. The research results show that the Fe3O4/Chitosan magnetic nanocomposite system with a content of chitosan ranging from 3% to 15% corresponding to the saturation magnetization of the system reaching 32 – 58,2 emu/g. With a chitosan content of 10%, the nanocomposite system's maximum adsorption capacity with Cr(VI) in aqueous solution and specificity surface area (according to BET) reached 55.65 mg/g and 64.14 m2/g, respectively. The adsorption process of Cr(VI) on Fe3O4/Chitosan nanocomposites showed that consistent with Langmuir isotherm tissue, the assumed second order kinetics and Elovich equations.
References
[1]. Phạm Thị Mai Hương, Trần Hồng Côn, Nguyễn Văn Thơm, “Nghiên cứu biến tính bùn đỏ Tây Nguyên làm vật liệu hấp phụ xử lý Asen trong nước,” Tạp chí Hoá học, Số 53(533) 152-156, (2015).
[2]. Ilker Akin, Gulsin Arslan, Alitor, Musafa. E, Yusus. C.C, "Asennic V removal from underground water by magnetic nanopartilces synthesized fromwaste red mud", Journal of Hazadous Materilas, 235(23), 62-68, (2012). DOI: https://doi.org/10.1016/j.jhazmat.2012.06.024
[3]. Resat. A, Kubilay. G, Mehmet. H. J, "Modelling of Copper (II), Cadmium (II), Lead (II) adsorption on Red mud", Journal of Colloid and Interface Science, 203 (1), 122-130, (1998). DOI: https://doi.org/10.1006/jcis.1998.5457
[4]. Pham Thi Mai Huong, Truong Anh Thu, Chu Qui Thuong, Tran Hong Con, Nguyen Thi Huong, "Hexavalent chromium adsorption on Magnetic nanoparticles synthesized from Tay Nguyen red mud from Vietnam", Asian journal of chemistry, Vol 32. 3, 602-606, (2020). DOI: https://doi.org/10.14233/ajchem.2020.22455
[5]. Qiao S.Z, Liu J, Lu G.Q, Ruren. X and Yan.X. "Modern inorganic synthetic chemistry" (The Netherlands: Elsevier) p 613. (2005). DOI: https://doi.org/10.1016/B978-0-444-63591-4.00021-5
[6]. Aharon Gedanken. "Using sonochemistry for the fabrication of nanomaterials". Ultrasonic Sonochemistry. 11, 47-55, (2000). DOI: https://doi.org/10.1016/j.ultsonch.2004.01.037
[7]. Xiaohong Tong và cộng sự, "Changes in structure, rheological property and antioxidant activity of soy protein isolate fibrils by ultrasound pretreatment and EGCG", Food Hydrocolloids, 122, 107084, (2022). DOI: https://doi.org/10.1016/j.foodhyd.2021.107084
[8]. Anaya-Esparza, L. M.,và cộng sự, "Chitosan-Tio2: A versatile hybrid composite". Materials, (2020). DOI: https://doi.org/10.3390/ma13040811
[9]. Ngah W.S.W and Fatinathan S, "Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies" Journal of Environmental Management, 91(4), 958-969, (2010). DOI: https://doi.org/10.1016/j.jenvman.2009.12.003
[10]. Hong Kynoon No, Na Young Park, Shin Ho Lee, Samuel P Meyers, "Antibacterial activity of chitosan oligomers with different molecular weights", International Journal of Food Microbiology, 74, 1-2, 65-72, (2002). DOI: https://doi.org/10.1016/S0168-1605(01)00717-6
[11]. Dev, V. V., Baburaj, G., Antony, S., Arun, V., & Krishnan, K. A. "Zwitterion- chitosan bed for the simultaneous immobilization of Zn(II), Cd(II), Pb(II) and Cu(II) from multi-metal aqueous systems". Journal of Cleaner Production. 255, 120309, (2020). DOI: https://doi.org/10.1016/j.jclepro.2020.120309
[12]. Sarode, S., Upadhyay, P., Khosa, M. A., Mak, T., Shakir, A., Song, S., et al. "Overview of wastewater treatment methods with special focus on biopolymer chitin- chitosan". International Journal of Biological Macromolecules, 121, 1086–1100, (2019). DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.089
[13]. Tonna Cuana, "Green synthesis of Fe3O4/chitosan nanoparticles utilizing Moringa Oleifera extracts and their surface plasmon resonance properties". ECS Journal of Solid State Science and Technology, 11, 083015, (2022). DOI: https://doi.org/10.1149/2162-8777/ac8b36
[14]. T. M. Tiama and H. Elhaes, "Application of Chitosan/Fe3O4 Nanocomposite as Biosenor". Lett. Appl. Nano., 10, 2438 (2021). DOI: https://doi.org/10.33263/LIANBS103.24382445
[15]. Vu Minh Thanh, Nguyen Thi Huong, Dao The Nam, Nguyen Dinh Tien Dung, Le Van Thu, Minh Tri Nguyen Le, "Synthesis of Ternary Fe3O4/ZnO/Chitosan magnetic nanoparticles via an ultrasound-assisted coprecipitation process for antibacterial applications", Journal of Nanomaterils. ID 8875471, (2020). DOI: https://doi.org/10.1155/2020/8875471
[16]. Thi Mai Huong Pham và cộng sự, "Facile ultrasound - assisted green synthesis of NiO/Chitosan nanocomposite from Mangosteen peel extractes as antibacterial agents", Journal of Nanomaterials, ID 2485291, (2022). DOI: https://doi.org/10.1155/2022/2485291
[17]. Aarti Sripathi Bhatt, Denthaje Kristhaje Bhat, Mysore Sridhar Santosh and Cheuk-wai Tai, "Chitosan/NiO nanocomposites: a potential new dielectric material", Jouranl of Materials Chemistry, 21, 13490, (2011). DOI: https://doi.org/10.1039/c1jm12011e
[18]. Matthias Thommes and et al, "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)", Pure Appl. Chem, 87(9-10): 1051-1069, (2015). DOI: https://doi.org/10.1515/pac-2014-1117