Optimization of roller burnishing process parameters using Taguchi and ANN methods
149 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.88.2023.139-146Keywords:
Taguchi; ANN; Roller burnishing; Surface roughness; Optimization.Abstract
The paper presents the results of research on the optimization of the roller burnishing process of brushing used in aeronautical structures by means of Taguchi method and ANN method. Spindle speed (S), feed rate (F) and burnishing depth (D) are chosen to be input parameters, and surface roughness (Ra) is chosen to be the objective of the optimization. Results of analyzing the data about used process parameters and measured surface roughness show that: 1 - Burnishing depth has the biggest influence on surface roughness, then spindle speed and feed rate; 2 - In the considered range of values of process parameters, optimal (minimum) surface roughness is reached as S and D are of largest values whilt F is of smallest one; 3 - Value of optimal surface roughness obtained by both methods is consistent with the experimental data. However, ANN method provides unstable results, the reason may be the fact that the data amount used is not big.
References
[1]. A. Aggarwal, H. Singh, P. Kumar, and M. Singh, “Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique-A comparative analysis”, J. Mater. Process. Technol., vol. 200, no. 1–3, pp. 373–384, , (2008). DOI: https://doi.org/10.1016/j.jmatprotec.2007.09.041
[2]. A. Srivastava, A. Sharma, A. S. Gaur, R. Kumar, and Y. K. Modi, “Prediction of surface roughness for CNC turning of EN8 steel bar using artificial neural network model”, J. Eur. des Syst. Autom., vol. 52, no. 2, pp. 185–188, (2019), doi: 10.18280/jesa.520211. DOI: https://doi.org/10.18280/jesa.520211
[3]. S. Kumar, Meenu, and P. S. Satsangi, “A genetic algorithmic approach for optimization of surface roughness prediction model in turning using UD-GFRP composite”, Indian J. Eng. Mater. Sci., vol. 19, no. 6, pp. 386–396, (2012).
[4]. S. S. Mahapatra, “Parametric Analysis and Optimization of Cutting Parameters for Turning Operations based on Taguchi Method”, Proc. Int. Conf. Glob. Manuf. Innov., pp. 1–9, (2006).
[5]. M. Steitz, J. Scheil, C. Müller, and P. Groche, “Effect of process parameters on surface roughness in hammer peening and deep rolling”, Key Eng. Mater., vol. 554–557, pp. 1887–1901, (2013). DOI: https://doi.org/10.4028/www.scientific.net/KEM.554-557.1887
[6]. S. C. Borse, “Optimization of Turning Process Parameter in Dry Turning of SAE52100 Steel”, Int. J. Mech. Eng. Technol., vol. 5, no. 12, pp. 1–8, (2014).
[7]. N. T. Trung, L. B. Xuan, “Optimization of interior roller burnishing process for improving surface quality”, Materials and manufacturing processes, Taylor & Francis, pp. 1-8, (2018).
[8]. Nguyen, T.T., Cao, L.H., Nguyen, T.A., Dang, X.P., “Multi-response optimization of the roller burnishing process in terms of energy consumption and product quality”, J. Clean. Prod.,245/1, 119328, (2020), https://doi.org/10.1016/j.jclepro.2019.119328. DOI: https://doi.org/10.1016/j.jclepro.2019.119328
[9]. Lin, Y.C., Wang, S.W., Lai, H.Y., “The relationship between surface roughness and burnishing factor in the burnishing process”, Int. J. Adv. Manuf. Tech. 23, pp. 666-671, (2004). DOI: https://doi.org/10.1007/s00170-002-1486-9
[10]. Nguyễn Trường An, "Quy hoạch thực nghiệm và xử lý số liệu trong kỹ thuật", Nhà xuất bản Quân đội nhân dân, tr. 65-120, (2019).
[11]. Đào Văn Hiệp, “Giám sát và điều khiển thông minh quá trình gia công cơ”, Nhà xuất bản Quân đội nhân dân, tr. 57-68, (2016).
[12]. Mark Hudson Beale, Martin T. Hagan, Martin T. Hagan,“Neural Network Toolbox™ 7, User’s Guide”, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, pp. 120-132, (2010).
[13]. Cosgdill, “Roll-a-finish”, ™ Internal/External Roller Burnishing Tools, www.cogsdill.co.uk