Building an object tracking algorithm based on image processing for UAV quadrotor
16 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.FEE.2024.65-71Keywords:
Drones; Quadrotors; Deep learning networks.Abstract
The paper presents the results of algorithm construction and the experimental control of object tracking based on image processing for quadrotor UAV using a dynamic model of quadrotor UAV, deep learning model and optimized for hardware system. The hardware system uses a depth camera, embedded computer to collect image data, object distance information and calculate, process to give control signals to the motors through the flight controller to ensure tracking and maintain distance between UAV and object. The results achieved in the paper can evaluate the ability to respond in real time to the problem of object tracking using image processing with hardware with limited resources.
References
[1]. M. Dimitris, A. John and P. Nikos, “UAVs for Industrial Applications: Identifying Challenges and Opportunities from the Implementation Point of View”, Procedia Manufacturing Procedia Manufacturing, v. 55, 183-190, (2021). DOI: https://doi.org/10.1016/j.promfg.2021.10.026
[2]. R. Shadie and Y. Suping, “A systematic review of UAV applications to education”, (2022).
[3]. Fakhar-I-Adil, Qureshi, A. Khan and Deeba, “Applications of Medical Drones in Public Health: An Overview”, (2021).
[4]. A. A. Laghari, A. K. Jumani, R. A. Laghari and H. Nawaz, “Unmanned Aerial Vehicles: A Review”, (2023). DOI: https://doi.org/10.1016/j.cogr.2022.12.004
[5]. F. Li, X. Fuhuai, W. Dongzheng and M. Guanglei, “The overview for UAV Air-Combat Decision method”, (2014).
[6]. W. Xudong, L. Bo and Z. Zhang, "Application of UAV Target Tracking Based on Computer," (2021).
[7]. B. Kamel and R. Naeem, "Human detection based on deep learning YOLO-v2 for real-time," (2021).
[8]. K. Lesole, W. Wanggen and H. Li, "Analysis Based on Recent Deep Learning Approaches Applied in Real-Time Multi-Object Tracking: A Review," (2021).
[9]. M. Mandal and S. K. Vipparthi, "An Empirical Review of Deep Learning Frameworks for Change Detection: Model Design, Experimental Frameworks, Challenges and Research Needs," (2022). DOI: https://doi.org/10.1109/TITS.2021.3077883
[10]. M. Karahan, H. Kurt and C. Kasnakoglu, "Autonomous Face Detection and Tracking Using Quadrotor UAV," (2020). DOI: https://doi.org/10.1109/ISMSIT50672.2020.9254469
[11]. H. C. Hsien, W. Y. Ta, K. Jau-Hong, S. Ming-Yu and C. Cheng-Chuan, "A hybrid moving object detection method for aerial images," (2010).
[12]. H. Saribas, B. Uzun, B. Benligiray, O. Eker and H. Cevikalp, "A Hybrid Method for Tracking of Objects by UAVs," (2019). DOI: https://doi.org/10.1109/CVPRW.2019.00082
[13]. L.-Y. Lo, C. H. Yiu, Y. Tang, A.-S. Yang, B. Li and C.-Y. Wen, "Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications," (2021).
[14]. M. Phạm Trung and T. Nguyễn Hoàng Thùy, "Mô hình điều khiển drone tự phát hiện và bám theo hướng di chuyển của con người," (2022).
[15]. G. Wang, Y. Chen, P. An, H. Hong, J. Hu and T. Huang, "UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios," (2023). DOI: https://doi.org/10.3390/s23167190
[16]. Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu and X. Wang, "ByteTrack: Multi-Object Tracking by Associating Every Detection Box," (2021). DOI: https://doi.org/10.1007/978-3-031-20047-2_1
[17]. G. Ian, B. Yoshua and C. Aaron, "Deep Learning," (2016).
[18]. P. Rafael, N. S. L and S. Eduardo, "A Survey on Performance Metrics for Object-Detection Algorithms," (2020).
[19]. "Comet ML," [Online]. Available: https://www.comet.com/site/about-us/.
[20]. N. Developer, "NVIDIA TensorRT," [Online]. Available: https://developer.nvidia.com/tensorrt.