Identification of process parameters in CDA-110 copper T-shaped tube hydroforming

Authors

  • Do Trong Dai School of Mechanical Engineering, Hanoi University of Science and Technology
  • Le Thanh Dat School of Mechanical Engineering, Hanoi University of Science and Technology
  • Dinh Van Duy School of Mechanical Engineering, Hanoi University of Science and Technology
  • Nguyen Lan Phuong School of Mechanical Engineering, Hanoi University of Science and Technology
  • Pham Quoc Tuan (Corresponding Author) School of Mechanical Engineering, Hanoi University of Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.106.2025.145-153

Keywords:

Tube hydroforming process; Process parameter identification; Multi-objective optimization; Surrogate model; Latin Hypercube Sampling; CDA-110 copper.

Abstract

This study develops a systematic method to identify the optimal process parameters of a T-shaped tube hydroforming process. Three process parameters: (1) axial displacement, (2) pressure amplification, and (3) maximum inner pressure are examined to optimize two critical performance metrics: minimum wall thickness (STH) and branch height (Height). Finite element analyses were conducted in Abaqus/Explicit to characterize the input-output relationships. Multi-objective optimization based on the Pareto front approach is applied to identify optimal process parameters that trade-off between STH and Height. Numerical validation demonstrates the effectiveness of the presented method.

References

[1]. M. Ahmetoglu and T. Altan. "Tube Hydroforming: State-of-the-Art and Future Trends", J. Mater. Process. Technol., vol. 98, no. 1, pp. 25–33, (2000).

[2]. S. Chinchanikar, H. Mulik, P. Varude, S. Atole, and N. Mundada. "A review of emerging hydroforming technologies: design considerations, parametric studies, and recent innovations", J. Eng. Appl. Sci., vol. 71, no. 1, p. 205, (2024).

[3]. K. I. Manabe and M. Amino. "Effects of process parameters and material properties on deformation process in tube hydroforming", J. Mater. Process. Technol., vol. 123, no. 2, pp. 285–291, (2002).

[4]. K. Zheng, J.-H. Zheng, Z. He, G. Liu, D. J. Politis, and L. Wang. "Fundamentals, Processes and Equipment for Hot Medium Pressure Forming of Light Material Tubular Components", Int. J. Lightweight Mater. Manuf., vol. 3, no. 1, pp. 1–19, (2020).

[5]. Y. Xu, X. Zhang, W. Xie, S. Zhang, Y. Tian, and L. Chen. "Optimisation of Aluminium Alloy Variable Diameter Tubes Hydroforming Process Based on Machine Learning", Appl. Sci., vol. 15, no. 9, p. 5045, (2025).

[6]. N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker. "Surrogate-based analysis and optimization", Prog. Aerosp. Sci., vol. 41, no. 1, pp. 1–28, (2005).

[7]. N. A. Pham, Q. T. Pham, V. D. Dinh, D. T. Nguyen, D.-T. Nguyen, T. D. Hoan, L. D. Giang. "Formability Assessment of C1100 Pure-Copper Tube Considering an Enhanced Modified Maximum Force Criterion", Materials, vol. 18, no. 9, p. 1919, (2025).

[8]. M. T. Trinh, T. D. Nguyen, Q. T. Pham, A. N. Pham, D. V. Dinh. "Hydro-Forming of U-Shaped Parts with Branches", Engineering, Technology & Applied Science Research, vol. 15, no. 1, (2025).

[9]. M. T. Trinh, D. T. Nguyen, T. Q. Pham, A. N. Pham, V. D. Dinh. "Hydro-Forming a Cross-Shaped Component from Tube Billet", Journal of Machine Engineering, vol. 25, no. 2, pp. 111–122, (2025).

[10]. D. C. Montgomery. Design and Analysis of Experiments, 10th ed., Hoboken, NJ, USA: Wiley, (2019).

[11]. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. "A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II", IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, (2002).

[12]. M. S. Chebbah and N. Lebaal. "Tube hydroforming optimization using a surrogate modeling approach and Genetic Algorithm", Mech. Adv. Mater. Struct., vol. 27, no. 6, pp. 515–524, (2018).

[13]. Z. Zhang, F. Xu, and X. Sun. "Optimization of process parameters during hydroforming of tank bottom using NSGA-III algorithm", Int. J. Adv. Manuf. Technol., vol. 119, pp. 4043–4055, (2022).

[14]. P. Saves, R. Lafage, N. Bartoli, Y. Diouane, J. H. Bussemaker, T. Lefebvre, J. T. Hwang, J. Morlier, and J. R. R. A. Martins. "SMT 2.0: A Surrogate Modeling Toolbox with a focus on Hierarchical and Mixed Variables Gaussian Processes", Advances in Engineering Software, (2024).

[15]. T. Huang, X. Song, and M. Liu. "A Kriging-based non-probability interval optimization of loading path in T-shape tube hydroforming", Int. J. Adv. Manuf. Technol., vol. 85, no. 5, pp. 1615–1631, (2016).

[16]. B. Phipson, S. C. Lee, I. Majewski, W. Alexander, and G. Smyth. "Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression", Annals of Applied Statistics, vol. 10, no. 2, pp. 946–963, (2016).

[17]. J. Blank and K. Deb. "pymoo: Multi-objective optimization in Python", IEEE Access, vol. 8, pp. 89497–89509, (2020).

[18]. W. Dan, X. Yue, M. Yu, T. Li, and J. Zhang. "Prediction and Global Sensitivity Analysis of Long-Term Deflections in Reinforced Concrete Flexural Structures Using Surrogate Models", Materials, vol. 16, no. 13, (2023).

[19]. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola. "Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index", Comput. Phys. Commun., vol. 181, no. 2, pp. 259–270, (2010).

Downloads

Published

02-10-2025

How to Cite

[1]
Do Trong Dai, Le Thanh Dat, Dinh Van Duy, Nguyen Lan Phuong, and Q. T. Pham, “Identification of process parameters in CDA-110 copper T-shaped tube hydroforming”, JMST, vol. 106, no. 106, pp. 145–153, Oct. 2025.

Issue

Section

Mechanics & Mechanical Engineering