Synthesis and characterization of in-situ MoS2-graphene hybrid nanostructured material
239 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.81.2022.122-127Keywords:
MoS2; Graphene; MoS2-Graphene; Hybrid nanostructured materials; In-situ.Abstract
Nowadays, it has been challenging to develop novel techniques and synthesis processes for hybrid two-dimensional materials. Hence, this research presents an innovative technique for the fabrication of MoS2-Graphene (MoS2-Gr) hybrid nanostructured materials. The graphene was effectively generated in-situ and incorporated into the interlayer spacing of MoS2, which was synthesized by using a co-precipitation process with diethyl glycol as the solvent, followed by annealing the as-synthesized MoS2 at 800 oC for two hours in an inert atmosphere. The integrated graphene enhanced the width of MoS2 interlayers, exposing a substantial concentration of active edge sites in the hybrid material, according to SEM, XRD, HR-TEM, and other characterizations. This research might lead to the development of viable hybrid structured materials for various applications. In addition, this study outlines a novel advanced approach for creating hybrid 2D nanostructured materials with superior characteristics.
References
[1]. Z. Fang, Q. Xing, D. Fernandez, X. Zhang, G. Yu, “A mini review on two-dimensional nanomaterial assembly”, Nano Res. 13, pp. 1179–1190, (2020). DOI: https://doi.org/10.1007/s12274-019-2559-5
[2]. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage”, Science. 347, p. 1246501, (2015). DOI: https://doi.org/10.1126/science.1246501
[3]. A. K . Geim, K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6, pp. 183–191, (2007). DOI: https://doi.org/10.1038/nmat1849
[4]. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, A.A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science (80-. ). 306, pp. 666–669, (2004). DOI: https://doi.org/10.1126/science.1102896
[5]. N.A. Kumar, M.A. Dar, R. Gul, J.-B. Baek, “Graphene and molybdenum disulfide hybrids: synthesis and applications”, Mater. Today. 18, pp. 286–298, (2015). DOI: https://doi.org/10.1016/j.mattod.2015.01.016
[6]. K.S. Novoselov, “Graphene: The Magic of Flat Carbon”, ECS Trans. 19, pp. 3-7, (2009). DOI: https://doi.org/10.1149/1.3119522
[7]. C.-P. Lu, G. Li, J. Mao, L.-M. Wang, E.Y. Andrei, “Bandgap, Mid-Gap States, and Gating Effects in MoS2”, Nano Lett. 14, pp. 4628–4633, (2014). DOI: https://doi.org/10.1021/nl501659n
[8]. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor”, Phys. Rev. Lett. 105, 136805, (2010).
[9]. Y. Shi, H. Li, L.-J. Li, “Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapor deposition techniques”, Chem. Soc. Rev. 44, pp. 2744–2756, (2015). DOI: https://doi.org/10.1039/C4CS00256C
[10]. Y. Chen, K. Yang, B. Jiang, J. Li, M. Zeng, L. Fu, “Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution”, J. Mater. Chem. A. 5, pp. 8187–8208, (2017). DOI: https://doi.org/10.1039/C7TA00816C
[11]. M. Ahmadi, O. Zabihi, S. Jeon, M. Yoonessi, A. Dasari, S. Ramakrishna, M. Naebe, “2D transition metal dichalcogenide nanomaterials: Advances, opportunities, and challenges in multi-functional polymer nanocomposites”, J. Mater. Chem. A. 8, pp. 845–883, (2020). DOI: https://doi.org/10.1039/C9TA10130F
[12]. I. Song, C. Park, M. Hong, J. Baik, H.-J. Shin, H.C. Choi, “Patternable Large-Scale Molybdenum Disulfide Atomic Layers Grown by Gold-Assisted Chemical Vapor Deposition”, Angew. Chemie Int. Ed. 53, pp. 1266–1269, (2014). DOI: https://doi.org/10.1002/anie.201309474
[13]. J. Zhao, D. Zhang, F. Guo, H. Guo, Y. Liu, Y. Yin, H. Hu, X. Wang, “Facile one-pot supercritical synthesis of MoS2/pristine graphene nanohybrid as a highly active advanced electrocatalyst for hydrogen evolution reaction”, Appl. Surf. Sci. 531, 147282, (2020). DOI: https://doi.org/10.1016/j.apsusc.2020.147282
[14]. E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, “Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells”, RSC Adv. 7, pp. 28234–28290, (2017). DOI: https://doi.org/10.1039/C7RA03599C
[15]. D.N. Sangeetha, M. Selvakumar, “Active-defective activated carbon/MoS2 composites for supercapacitor and hydrogen evolution reactions”, Appl. Surf. Sci. 453, pp. 132–140, (2018). DOI: https://doi.org/10.1016/j.apsusc.2018.05.033
[16]. X. Zhou, L.-J. Wan, Y.-G. Guo, “Synthesis of MoS2 nanosheet–graphene nanosheet hybrid materials for stable lithium storage”, Chem. Commun. 49, pp. 1838–1840, (2013). DOI: https://doi.org/10.1039/c3cc38780a
[17]. X. Huang, C. Tan, Z. Yin, H. Zhang, “25th Anniversary Article: Hybrid Nanostructures Based on Two-Dimensional Nanomaterials”, Adv. Mater. 26, pp. 2185–2204, (2014). DOI: https://doi.org/10.1002/adma.201304964
[18]. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, “MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction”, J. Am. Chem. Soc. 133, pp. 7296–7299, (2011). DOI: https://doi.org/10.1021/ja201269b
[19]. Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee, A.L. Hsu, S.M. Kim, K.K. Kim, H.Y. Yang, L.-J. Li, J.-C. Idrobo, J. Kong, “van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates”, Nano Lett. 12, pp. 2784–2791, (2012). DOI: https://doi.org/10.1021/nl204562j
[20]. L. David, R. Bhandavat, G. Singh, “MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes”, ACS Nano. 8, pp. 1759–1770, (2014). DOI: https://doi.org/10.1021/nn406156b
[21]. Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C.H. Lee, C. Sun, L. Calderin, P.N. Browning, M.S. Bresnehan, M.J. Kim, T.S. Mayer, M. Terrones, J.A. Robinson, “Direct Synthesis of van der Waals Solids”, ACS Nano. 8, pp. 3715–3723, (2014). DOI: https://doi.org/10.1021/nn5003858
[22]. D. Lang, T. Shen, Q. Xiang, “Roles of MoS2 and Graphene as Cocatalysts in the Enhanced Visible-Light Photocatalytic H2 Production Activity of Multiarmed CdS Nanorods”, ChemCatChem. 7, pp. 943–951, (2015). DOI: https://doi.org/10.1002/cctc.201403062
[23]. Z. Cheng, Y. Xiao, W. Wu, X. Zhang, Q. Fu, Y. Zhao, L. Qu, “All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction”, ACS Nano. 15, pp. 11417–11427, (2021). DOI: https://doi.org/10.1021/acsnano.1c01024
[24]. H. Gao, J. Zang, Y. Wang, S. Zhou, P. Tian, S. Song, X. Tian, W. Li, “One-step preparation of cobalt-doped NiS@MoS2 core-shell nanorods as bifunctional electrocatalyst for overall water splitting”, Electrochim. Acta. 377, 138051, (2021). DOI: https://doi.org/10.1016/j.electacta.2021.138051
[25]. Khai, T. Van; Long, L. N.; Phong, M. T.; Kien, P. T.; Thang, L. Van; Lam, T. D. “Synthesis and Optical Properties of MoS2/Graphene Nanocomposite”. J. Electron. Mater. 49 (2), pp. 969–979, (2020). DOI: https://doi.org/10.1007/s11664-019-07670-0
[26]. Wang, Y.; Zhen, M.; Liu, H.; Wang, C. “Interlayer-Expanded MoS2/Graphene Composites as Anode Materials for High-Performance Lithium-Ion Batteries” J. Solid State Electrochem. 22 (10), pp. 3069–3076, (2018). DOI: https://doi.org/10.1007/s10008-018-4018-8
[27]. Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund. “Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films”. Nano Lett. 6 (12), pp. 2667–2673, (2006). DOI: https://doi.org/10.1021/nl061420a