Synthesis of magneto-plasmonic hybrid material for cancer hyperthermia
266 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.81.2022.128-137Keywords:
Cobalt ferrite; Silver; Hybrid nanoparticles; Hyperthermia; Magnetic nanoparticles; Cancer treatment.Abstract
Magnetic nanoparticle CoFe2O4-based hyperthermia is a promising non-invasive approach for cancer therapy. However, CoFe2O4 nanoparticles (NPs) have a low heat transfer efficiency, which limits their practical clinical applications. Hence, it is necessary to investigate the higher-performance magnetic NPs-based hybrid nanostructures to enhance their magnetic hyperthermia efficiency. This work presents a facile in situ approach for synthesizing cobalt ferrite (CoFe2O4) silver (Ag) hybrid NPs as optical-magnetic hyperthermia heat mediators. The prepared cobalt ferrite silver hybrid NPs exhibit a higher heat generation than that of individual Ag or CoFe2O4 NPs under simultaneous exposure to an alternating current magnetic field and laser source. The obtained results confirm that the hybridization of CoFe2O4 and Ag NPs could significantly enhance the hyperthermia efficiency of the prepared NPs. Therefore, the CoFe2O4-Ag hybrid NPs are considered as potential candidates for a high-performance hyperthermia mediator based on a simple and effective synthesis approach.
References
[1]. C.-H. Wu, J. Cook, S. Emelianov, and K. Sokolov, “Multimodal Magneto-Plasmonic Nanoclusters for Biomedical Applications,” Adv. Funct. Mater., vol. 24, no. 43, pp. 6862–6871, (2014). DOI: https://doi.org/10.1002/adfm.201401806
[2]. J. Kolosnjaj-Tabi, I. Marangon, A. Nicolas-Boluda, A. K. A. Silva, and F. Gazeau, “Nanoparticle-based hyperthermia, a local treatment modulating the tumor extracellular matrix,” Pharmacol. Res., vol. 126, pp. 123–137, (2017). DOI: https://doi.org/10.1016/j.phrs.2017.07.010
[3]. C. S. S. R. Kumar and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery,” Adv. Drug Deliv. Rev., vol. 63, no. 9, pp. 789–808, (2011). DOI: https://doi.org/10.1016/j.addr.2011.03.008
[4]. P. H. Nam et al., “Polymer-coated cobalt ferrite nanoparticles: synthesis, characterization, and toxicity for hyperthermia applications,” New J. Chem., vol. 42, no. 17, pp. 14530–14541, (2018). DOI: https://doi.org/10.1039/C8NJ01701H
[5]. J.-H. Lee et al., “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol., vol. 6, no. 7, pp. 418–422, (2011). DOI: https://doi.org/10.1038/nnano.2011.95
[6]. P. Kaur, M. L. Aliru, A. S. Chadha, A. Asea, and S. Krishnan, “Hyperthermia using nanoparticles – Promises and pitfalls,” Int. J. Hyperth., vol. 32, no. 1, pp. 76–88, (2016). DOI: https://doi.org/10.3109/02656736.2015.1120889
[7]. A. Espinosa, R. Di Corato, J. Kolosnjaj-Tabi, P. Flaud, T. Pellegrino, and C. Wilhelm, “Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment,” ACS Nano, vol. 10, no. 2, pp. 2436–2446, (2016).
[8]. M. Abdulla-Al-Mamun, Y. Kusumoto, T. Zannat, Y. Horie, and H. Manaka, “Au-ultrathin functionalized core–shell (Fe3O4@Au) monodispersed nanocubes for a combination of magnetic/plasmonic photothermal cancer cell killing,” RSC Adv., vol. 3, no. 21, p. 7816, (2013). DOI: https://doi.org/10.1039/c3ra21479f
[9]. A. Riedinger et al., “Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles,” Nano Lett., vol. 13, no. 6, pp. 2399–2406, (2013). DOI: https://doi.org/10.1021/nl400188q
[10]. M. F. Zarabi, N. Arshadi, A. Farhangi, and A. Akbarzadeh, “Preparation and Characterization of Gold Nanoparticles with Amino Acids, Examination of Their Stability,” Indian J. Clin. Biochem., vol. 29, no. 3, pp. 306–314, (2014). DOI: https://doi.org/10.1007/s12291-013-0358-4
[11]. W.-Z. Shen, S. Cetinel, K. Sharma, E. R. Borujeny, and C. Montemagno, “Peptide-functionalized iron oxide magnetic nanoparticle for gold mining,” J. Nanoparticle Res., vol. 19, no. 2, p. 74, (2017). DOI: https://doi.org/10.1007/s11051-017-3752-7
[12]. M. E. de Sousa et al., “Stability and Relaxation Mechanisms of Citric Acid Coated Magnetite Nanoparticles for Magnetic Hyperthermia,” J. Phys. Chem. C, vol. 117, no. 10, pp. 5436–5445, (2013). DOI: https://doi.org/10.1021/jp311556b
[13]. “Methods for Assessing Surface Cleanliness,” in Developments in Surface Contamination and Cleaning, Volume 12, Elsevier, pp. 23–105, (2019). DOI: https://doi.org/10.1016/B978-0-12-816081-7.00003-6
[14]. S. Campelj, D. Makovec, and M. Drofenik, “Preparation and properties of water-based magnetic fluids,” J. Phys. Condens. Matter, vol. 20, no. 20, p. 204101, (2008). DOI: https://doi.org/10.1088/0953-8984/20/20/204101
[15]. Q. Ding et al., “Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia,” Biomaterials, vol. 124, pp. 35–46, (2017). DOI: https://doi.org/10.1016/j.biomaterials.2017.01.043
[16]. S. B. Waje, M. Hashim, W. D. W. Yusoff, and Z. Abbas, “X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering,” Appl. Surf. Sci., vol. 256, no. 10, pp. 3122–3127, (2010). DOI: https://doi.org/10.1016/j.apsusc.2009.11.084
[17]. S. Peng, C. Lei, Y. Ren, R. E. Cook, and Y. Sun, “Plasmonic/Magnetic Bifunctional Nanoparticles,” Angew. Chemie Int. Ed., vol. 50, no. 14, pp. 3158–3163, (2011). DOI: https://doi.org/10.1002/anie.201007794
[18]. Espinosa A., R. Di Corato, J. Kolosnjaj-Tabi, P. Flaud, T. Pellegrino, and C. Wilhelm, "Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment" ACS Nano, vol. 10, pp. 2436-2446, (2016). DOI: https://doi.org/10.1021/acsnano.5b07249
[19]. Das R., N. Rinaldi-Montes, J. Alonso, Z. Amghouz, E. Garaio, J. A. Garcia, P. Gorria, J. A. Blanco, M.-H. Phan, and H. Srikanth, "Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers" ACS Appl. Mater. Interfaces, vol. 8, pp. 25162-25169, (2016). DOI: https://doi.org/10.1021/acsami.6b09942