Investigating the effects of various input beam profiles on the propagations of light in two-dimensional interfaced binary

159 views

Authors

DOI:

https://doi.org/10.54939/1859-1043.j.mst.85.2023.111-117

Keywords:

Binary waveguide; Localized state; Beam profile; Interfaced channel; Beam propagation.

Abstract

In this work, we numerically study how various input beam profiles influence the linear and nonlinear light propagation at the interface of two-dimensional (2D) binary waveguide arrays. It is revealed that, due to the presence of the central homogeneous interfaced waveguides, light beams are effectively steered into the preferred direction. Interestingly, the formation of discretely localized states in nonlinear modes can be intentionally utilized to optimize the stability and intensity of the signals at the central interfaced channels. This study thus opens alternative possibilities to achieve reliable distant beam propagation through discrete optical systems.

References

[1]. C. M. Watts, X. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers", Adv. Mater. 24, (2012). DOI: https://doi.org/10.1002/adma.201200674

[2]. A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, "On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing", ACS Photonics 4, 1371 (2017). DOI: https://doi.org/10.1021/acsphotonics.6b01025

[3]. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing Light Behaviour in Linear and Nonlinear Waveguide Lattices", Nat. 2003 4246950 424, 817 (2003). DOI: https://doi.org/10.1038/nature01936

[4]. S. Jahani and Z. Jacob, "All-Dielectric Metamaterials", Nat. Nanotechnol. 11, 23 (2016). DOI: https://doi.org/10.1038/nnano.2015.304

[5]. D. N. Christodoulides and R. I. Joseph, "Discrete Self-Focusing in Nonlinear Arrays of Coupled Waveguides", Opt. Lett. Vol. 13, Issue 9, Pp. 794-796 13, 794 (1988). DOI: https://doi.org/10.1364/OL.13.000794

[6]. A. A. Sukhorukov and Y. Kivshar, "Generation and Stability of Discrete Gap Solitons", Opt. Lett. Vol. 28, Issue 23, Pp. 2345-2347 28, 2345 (2003). DOI: https://doi.org/10.1364/OL.28.002345

[7]. M. Conforti, C. De Angelis, and T. R. Akylas, "Energy Localization and Transport in Binary Waveguide Arrays", Phys. Rev. A - At. Mol. Opt. Phys. 83, (2011). DOI: https://doi.org/10.1103/PhysRevA.83.043822

[8]. F. Biancalana and T. X. Tran, "Mimicking the Nonlinear Dynamics of Optical Fibers with Waveguide Arrays: Towards a Spatiotemporal Supercontinuum Generation", Opt. Express, Vol. 21, Issue 15, Pp. 17539-17546 21, 17539 (2013). DOI: https://doi.org/10.1364/OE.21.017539

[9]. T. X. Tran and F. Biancalana, "Linear and Nonlinear Photonic Jackiw-Rebbi States in Interfaced Binary Waveguide Arrays", Phys. Rev. A 96, 013831 (2017). DOI: https://doi.org/10.1103/PhysRevA.96.013831

[10]. T. X. Tran and D. C. Duong, "Higher-Order Dirac Solitons in Binary Waveguide Arrays", Ann. Phys. (N. Y). 361, 501 (2015). DOI: https://doi.org/10.1016/j.aop.2015.07.015

[11]. T. X. Tran and F. Biancalana, "Diffractive Resonant Radiation Emitted by Spatial Solitons in Waveguide Arrays", Phys. Rev. Lett. 110, 113903 (2013). DOI: https://doi.org/10.1103/PhysRevLett.110.113903

[12]. T. X. Tran, H. M. Nguyen, and D. C. Duong, "Jackiw-Rebbi States in Interfaced Binary Waveguide Arrays with Kerr Nonlinearity", Phys. Rev. A 100, 053849 (2019). DOI: https://doi.org/10.1103/PhysRevA.100.053849

[13]. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, "Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations", Phys. Rev. Lett. 83, 4756 (1999). DOI: https://doi.org/10.1103/PhysRevLett.83.4756

[14]. S. Longhi, "Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures", Appl. Phys. B 2011 1043 104, 453 (2011). DOI: https://doi.org/10.1007/s00340-011-4628-7

[15]. S. Longhia and G. Della Valle, "Klein Tunneling of Two Correlated Bosons", Eur. Phys. J. B 2013 865 86, 1 (2013). DOI: https://doi.org/10.1140/epjb/e2013-40154-8

[16]. M. C. Tran, Q. Nguyen-The, C. C. Do, and T. X. Tran, "Inverse Klein Tunneling Effect in Binary Waveguide Arrays", Phys. Rev. A 105, 023523 (2022). DOI: https://doi.org/10.1103/PhysRevA.105.023523

[17]. F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, "Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices", Phys. Rev. Lett. 105, 143902 (2010). DOI: https://doi.org/10.1103/PhysRevLett.105.143902

[18]. T. X. Tran, H. M. Nguyen, and D. C. Duong, "Optical Analogs of Pair Production and Annihilation in Binary Waveguide Arrays with a Curved Section", Phys. Rev. A 105, 032201 (2022). DOI: https://doi.org/10.1103/PhysRevA.105.032201

[19]. R. Paschotta, "Field Guide to Lasers", F. Guid. to Lasers (2009).

Downloads

Published

28-02-2023

How to Cite

Doan Tung, A., X. T. Tran, and X. T. Nguyen. “Investigating the Effects of Various Input Beam Profiles on the Propagations of Light in Two-Dimensional Interfaced Binary”. Journal of Military Science and Technology, vol. 85, Feb. 2023, pp. 111-7, doi:10.54939/1859-1043.j.mst.85.2023.111-117.

Issue

Section

Research Articles

Categories