Electrically reconfigurable metamaterial absorber operating in C band
211 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.91.2023.63-72Keywords:
Electrically reconfigurable metamaterial absorber; Varactor diode; Magnetic resonance.Abstract
Reconfigurable metamaterial absorbers have garnered significant attention due to their ability to actively manipulate absorption characteristics without modifying the underlying geometrical structure. This study proposes a straightforward approach for the creation of electrically reconfigurable metamaterial absorbers through the integration of varactor diodes. The presented work encompasses two distinct types of absorbers: single-band and dual-band metamaterial absorbers. By leveraging an external voltage, effective control over absorption frequencies in the C-band is achieved. The underlying principle is elucidated, wherein controlled variations of effective parameters within the integrated diode facilitate the adjustment of the magnetic resonance frequency of the metamaterial absorber. Consequently, our research might contribute to the advancement of efficient, dynamic, and adaptive metamaterial-based devices endowed with enhanced functionalities for diverse applications in the realms of telecommunications, electromagnetic shielding, and beyond.
References
[1]. A. B. Devarapalli, T. Moyra, “Design of a metamaterial loaded W-shaped patch antenna with FSS for improved bandwidth and gain”, Silicon, 15, 2011-2024 (2023). DOI: https://doi.org/10.1007/s12633-022-02123-6
[2]. C. M. Saleh, E. Almajali, A. Jarndal, J. Yousaf, S. S. Alja’Afreh, R. E. Amaya, “Wideband 5G antenna gain enhancement using a compact single-layer millimeter wave metamaterial lens”, IEEE Access, 11, 14928-14942 (2023). DOI: https://doi.org/10.1109/ACCESS.2023.3244401
[3]. W. J. Padilla, R. D. Averitt, “Imaging with metamaterials”, Nature Reviews Physics, 4, 85-100 (2022). DOI: https://doi.org/10.1038/s42254-021-00394-3
[4]. Y. Roh, S.-H. Lee, J. Kwak, H. S. Song, S. Shin, Y. K. Kim, J. W. Wu, B.-K. Ju, B. Kang, M. Seo, “Terahertz imaging with metamaterials for biological applications”, Sensors and Actuators B: Chemical, 352(1), 130993 (2022). DOI: https://doi.org/10.1016/j.snb.2021.130993
[5]. H. Lee, D.-H. Kwon, “Microwave metasurface cloaking for freestanding objects”, Physical Review Applied 17, 054012 (2022). DOI: https://doi.org/10.1103/PhysRevApplied.17.054012
[6]. N. Wu, Y. Jia, C. Qian, H. Chen, “Pushing the limits of metasurface cloak using global inverse design”, Advanced Optical Materials 11(7), 2202130 (2023). DOI: https://doi.org/10.1002/adom.202202130
[7]. W. Shahzad, W. Hu, Q. Ali, H. Raza, S. M. Abbas, L. P. Ligthart, “A low-cost metamaterial sensor based on DS-CSRR for material characterization applications”, Sensors 22(5), 2000 (2022). DOI: https://doi.org/10.3390/s22052000
[8]. S. Shen, X. Liu, Y. Shen, J. Qu, E. Pickwell-MacPherson, X. Wei, Y. Sun, “Recent advances in the development of materials for terahertz metamaterial sensing”, Advanced Optical Materials 10(1), 2101008 (2022). DOI: https://doi.org/10.1002/adom.202101008
[9]. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber”, Physical Review Letters 100, 207402 (2008). DOI: https://doi.org/10.1103/PhysRevLett.100.207402
[10]. Z. Huang, B. Wang, “Ultra-broadband metamaterial absorber for capturing solar energy from visible to near infrared”, Surfaces and Interfaces 33, 102244 (2022). DOI: https://doi.org/10.1016/j.surfin.2022.102244
[11]. P. D. Tan, D. T. Ha, B. S. Tung, B. X. Khuyen, D. T. Chi, V. D. Lam, L. Chen, H. Zheng, Y. P. Lee, “Recoverable broadband absorption based on ultra-flexible meta-surfaces”, Crystals 12, 1817 (2022). DOI: https://doi.org/10.3390/cryst12121817
[12]. M. Bennaoum, M. Berka, A. Bendaoudi, A. Y. Rouabhi, Z. Mahdjoub, “Investigation of a near-perfect quad-band polarization-insensitive metamaterial absorber based on dual-T circular shaped resonator array designed on a silicon substrate for C-, X- and Ku-bands applications”, Silicon 15, 699-712 (2023). DOI: https://doi.org/10.1007/s12633-022-02038-2
[13]. M. Zhong, “Measurement and verification of a multi-band terahertz metamaterial absorber based on multiple coupling effects”, Infrared Physics and Technology 128, 104506 (2023). DOI: https://doi.org/10.1016/j.infrared.2022.104506
[14]. R. M. H. Bilal, S. Zakir, M. A. Naveed, M. Zubair, M. Q. Mehmood, Y. Massoud, “Nanoengineered nickel-based ultrathin metamaterial absorber for the visible and short-infrared spectrum”, Optical Materials Express 13(1), 28-40 (2023). DOI: https://doi.org/10.1364/OME.476837
[15]. B. X. Khuyen, B. S. Tung, Y. J. Yoo, Y. J. Kim, K. W. Kim, L.-Y. Chen, V. D. Lam, Y. P. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band”, Scientific Reports 7, 45151 (2017). DOI: https://doi.org/10.1038/srep45151
[16]. G. Deng, Z. Yu, J. Yang, Z. Yin, Y. Li, B. Chi, “A miniaturized 3-D metamaterial absorber with wide angle stability”, IEEE Microwave and Wireless Components Letters 32(9), 1111-1114 (2022). DOI: https://doi.org/10.1109/LMWC.2022.3169599
[17]. X. Sun, Z. Qu, J. Yuan, Q. Wang, “Reconfigurable broadband polarisation conversion metasurface based on VO2”, Photonics and Nanostructures - Fundamentals and Applications 50, 101012 (2022). DOI: https://doi.org/10.1016/j.photonics.2022.101012
[18]. H. Feng, Z. Zhang, J. Wang, J. Zhang, D. Fang, C. Liu, G. Wang, Y. Gao, Y. Gao, “Individually frequency and amplitude tunable metamaterial absorber with sensing functions based on strontium titanate and graphene”, Diamond and Related Materials 130, 109455 (2022). DOI: https://doi.org/10.1016/j.diamond.2022.109455
[19]. L. V. Long, N. H. Tung, T. T. Giang, P. T. Son, N. T. Tung, B. S. Tung, B. X. Khuyen, V. D. Lam, “Rotary bi-layer ring-shaped metamaterials for reconfiguration absorbers”, Applied Optics 61(30), 9078-9084 (2022). DOI: https://doi.org/10.1364/AO.471949
[20]. R. Yang, F. Zhang, Z. Li, Q. Fu, Y. Fan, “Controllable electromagnetically induced transparency in an electrically tunable terahertz hybrid metasurface”, Optics & Laser Technology 163, 109380 (2023). DOI: https://doi.org/10.1016/j.optlastec.2023.109380
[21]. X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate”, Sensors and Actuators A: Physical 31, 74-80 (2015). DOI: https://doi.org/10.1016/j.sna.2015.02.040
[22]. H. L. Wang, Y. K. Zhang, T. Y. Zhang, H. F. Ma, T. J. Cui, “Broadband and programmable amplitude-phase-joint-coding information metasurface”, ACS Applied Materials & Interfaces 14(25), 29431–29440 (2022). DOI: https://doi.org/10.1021/acsami.2c05907
[23]. L. Shao, W. Zhu, “Electrically reconfigurable microwave metasurfaces with active lumped elements: a mini review”, Frontiers in Materials 8, 689665 (2021). DOI: https://doi.org/10.3389/fmats.2021.689665
[24]. F. Yang, P. Pitchappa, N. Wang, “Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links”, Micromachines 13(2), 285 (2022). DOI: https://doi.org/10.3390/mi13020285
[25]. CST Microwave Studio. Dassault Systèmes. http://www.cst.com.
[26]. J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, T. J. Cui, “A tunable metamaterial absorber using varactor diodes”, New Journal of Physics 15, 043049 (2013). DOI: https://doi.org/10.1088/1367-2630/15/4/043049
[27]. J. Zhou, E. N. Economou, T. Koschny, C. M. Soukoulis, “Unifying approach to lef-handed material design”, Optics Letters 31, 3620-3622 (2006). DOI: https://doi.org/10.1364/OL.31.003620
[28]. B. X. Khuyen, B. S. Tung, Y. J. Kim, J. S. Hwang, K. W. Kim, J. Y. Rhee, V. D. Lam, Y. H. Kim, Y. P. Lee, “Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency”, Scientific Reports 8, 11632 (2018). DOI: https://doi.org/10.1038/s41598-018-29896-4