Nghiên cứu tối ưu hóa tổng hợp endo-tetrahydrodicyclopentadiene từ dicyclopentadiene
104 lượt xemDOI:
https://doi.org/10.54939/1859-1043.j.mst.IPE.2024.189-196Từ khóa:
Endo-tetrahydrodicyclopentadiene; Dicyclopentadiene; Hydro hóa; Endo-THDCPD; DCPD.Tóm tắt
Endo-tetrahydrodicyclopentadiene (endo-THDCPD) đóng vai trò là tiền chất quan trọng trong quá trình tổng hợp exo-tetrahydrodicyclopentadiene, là thành phần chính của nhiên liệu JP-10, một loại nhiên liệu hydrocarbon một thành phần được sử dụng cho tên lửa hành trình, tên lửa và động cơ đẩy máy bay siêu thanh hiệu suất cao. Endo-THDCPD được tổng hợp thông qua phản ứng hydro hóa dicyclopentadiene (DCPD) sử dụng chất xúc tác Pd/C. Trong nghiên cứu này, các điều kiện tối ưu cho quá trình hydro hóa đã được nghiên cứu kỹ lưỡng. Cụ thể, phản ứng được thực hiện trong dung môi n-hexane ở nhiệt độ phản ứng 90 °C, áp suất H2 là 0,5 MPa, thời gian phản ứng là 4 giờ và tỷ lệ khối lượng chất xúc tác/DCPD là 10%.
Tài liệu tham khảo
[1]. Bakke, J. M., & Lundquist, M, “The endo to exo isomerisation of dicyclopentadiene,” Acta chemica scandinavica, vol.44, no.8, pp. 860-861, (1989).
[2]. Fouilloux, P., Martin, G. A., Renouprez, A. J., Moraweck, B., Imelik, B., & Prettre, M, “A study of the texture and structure of Raney nickel,” Journal of Catalysis, vol. 2, no.2, pp. 212-222, (1972).
[3]. Yu, X., Li, H., & Deng, J. F, “Selective hydrogenation of adiponitrile over a skeletal Ni–P amorphous catalyst (Raney Ni–P) at 1 atm pressure,” Applied Catalysis A: General, vol. 199, no. 2, pp.191-198, (2000).
[4]. Fow, K. L., Ganapathi, M., Stassen, I., Fransaer, J., Binnemans, K., & De Vos, D. E, “Highly active gauze-supported skeletal nickel catalysts,” Chemical communications, vol. 49, no. 76, pp. 8498-8500, (2013).
[5]. Freel, J., Pieters, W. J. M., & Anderson, R. B, “The structure of Raney nickel: I. Pore structure,” Journal of Catalysis, vol. 14, no. 3, pp. 247-256, (1969).
[6]. Sane, S., Bonnier, J. M., Damon, J. P., & Masson, J, “Raney metal catalysts: I. comparative properties of raney nickel proceeding from Ni-Ai intermetallic phases,” Applied catalysis, vol. 9, no. 1, pp. 69-83, (1984).
[7]. Zhao, A., Ying, W., Zhang, H., Ma, H., & Fang, D. “Ni–Al2O3 catalysts prepared by solution combustion method for syngas methanation,” Catalysis Communications, vol. 17, pp. 34-38, (2012).
[8]. Seo, Y. S., Jung, Y. S., Yoon, W. L., Jang, I. G., & Lee, T. W, “The effect of Ni content on a highly active Ni–Al2O3 catalyst prepared by the homogeneous precipitation method”, International Journal of Hydrogen Energy, vol. 36, no. 1, pp. 94-102, (2011).
[9]. Hou, Z., Yokota, O., Tanaka, T., & Yashima, T. “Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2,” Applied Catalysis A: General, vol. 253, no.2, pp. 381-387, (2003).
[10]. Natesakhawat, S., Oktar, O., & Ozkan, U. S, “Effect of lanthanide promotion on catalytic performance of sol–gel Ni/Al2O3 catalysts in steam reforming of propane,” Journal of Molecular Catalysis A: Chemical, vol. 24, no.1-2, pp. 133-146, (2005).
[11]. Liu, G., Mi, Z., Wang, L., & Zhang, X, “Kinetics of dicyclopentadiene hydrogenation over Pd/Al2O3 catalyst”, Industrial & engineering chemistry research, vol. 44, no. 11, pp. 3846-3851, (2005).
[12]. Khan, A., Ali, S. S., Chodimella, V. P., Farooqui, S. A., Anand, M., & Sinha, A. K., “Catalytic conversion of dicyclopentadiene into high energy density fuel: a brief review,” Industrial & Engineering Chemistry Research, 60(5), 1977-1988, (2021).
[13]. Zhang, X., Pan, L., Wang, L., & Zou, J. J, “Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids,” Chemical Engineering Science, vol. 180, no. 95-125, (2018).
[14]. Zou, J. J., Zhang, X., Kong, J., & Wang, L, “Hydrogenation of Dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4,” Fuel, vol. 87, no. 17-18, pp. 3655-3659, (2008).
[15]. Khan, A., Chodimella, V. P., Sharma, A., Ali, S. S., Mishra, A., Anand, M., Sinha, A. K.“Conversion of dicyclopentadiene into high energy density fuel exo-tetrahydrodicyclopentadiene: An experimental and computational study,” Fuel, vol. 334, pp. 126605, (2023).