Tạo tín hiệu ngẫu nhiên bằng bộ liên kết bán phi tuyến

201 lượt xem

Các tác giả

  • Bui Xuan Kien (Tác giả đại diện) Trường Đại học Điện lực
  • Dinh Van Chau Trường Đại học Điện lực
  • Nguyen Manh Thang Viện Khoa học và Công nghệ quân sự
  • Pham Thanh Quang Viện Khoa học và Công nghệ quân sự

DOI:

https://doi.org/10.54939/1859-1043.j.mst.89.2023.94-102

Từ khóa:

Quang học phi tuyến; Bộ ghép phi tuyến; Thông tin quang không dây; Thông tin trong không gian tự do; Bảo mật thông tin.

Tóm tắt

Bộ liên kết bán phi tuyến (SNC) được sử dụng để tách tín hiệu quang thành hai tín hiệu có biên độ khác nhau và định hình lại một loạt tín hiệu. Các ứng dụng được đề cập dựa trên sự phụ thuộc đơn điệu của các hệ số truyền vào cường độ đầu vào, thay đổi trong một khoảng thời gian. Trong bài báo này, chúng tôi chỉ ra rằng có một khoảng cường độ đầu vào nhất định, trong đó các hệ số truyền tải trùng nhau. Những đặc điểm này của SNC có thể được sử dụng để tạo tín hiệu ngẫu nhiên. Sử dụng biểu thức mô tả mối quan hệ công suất đầu ra-đầu vào, biểu thức của tín hiệu trộn lẫn quang học, tín hiệu sóng mang và tín hiệu sóng mang được mã hóa, vùng chồng lấn của cường độ đầu vào được quan sát bằng số. Do đó, các tín hiệu ngẫu nhiên được mô phỏng. Các tín hiệu thu được sẽ được thảo luận để chỉ ra cơ hội sử dụng chúng cho bảo mật thông tin của truyền thông quang không dây hoặc không gian tự do trong tương lai.

Tài liệu tham khảo

[1]. C. W. Therrien, M. Tummala, “Probability and random process for electrical and computer engineers”, CRC Pres, p.249, (2012).

[2]. E. Garmire, “Signal Processing With A Nonlinear Fabry-Perot”, Proc. SPIE 0269, 69-74 (1981).

[3]. I. S. Varnosfadenani, M. F. Sabahi, M. Atael, “Joint equalization and detection in chaotic communication systems using simulation-based methods”, Communications 69, 1445-1452 (2015) DOI: https://doi.org/10.1016/j.aeue.2015.06.013

[4]. L. Sang, J.Zhang, T. Zhao, M. Virte, L. Gong and Y. Wang, “Optical Boolean chaos”, Opt. Express 28, 29296-29305 (2020). DOI: https://doi.org/10.1364/OE.404879

[5]. L. Sang, Y. Guo, H. Liu, J. Zhang, and Y. Wang, “Real-time all-optical random numbers based on optical Booleen chaos”, Opt. Express 29, 7100-7109 (2021). DOI: https://doi.org/10.1364/OE.420010

[6]. J. Wang, G. Meloni, G. Berrettini, L. poti, and A. Bogoni, “All-optical binary counter based on semiconductor optical amplifiers”, Opt. Lett. 34, 3517-3519 (2009). DOI: https://doi.org/10.1364/OL.34.003517

[7]. P. Ashok, M. G. Madhan, and N. A. Natraj, “Performace evaluation of free space optical link by incorporating the device parameters of quantum cascade laser-based transmitter”, Laser Phys. Lett. 18, 035301 (2021). DOI: https://doi.org/10.1088/1612-202X/abdcbc

[8]. N. Li, A. Locquet, M. Bloch, D.S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the dynamics of a semiconductor laser”, Opt. Express 26, 6634-6646 (2014). DOI: https://doi.org/10.1364/OE.22.006634

[9]. R. Sakuraba, K. Iwakawa, K. Kanno, and A. Uchida, “Tb/s physical random bit generation with bandwidth enhanced chaos in three-cascaded semiconductor lasers”, Opt. Express 23, 1470-1490 (2015). DOI: https://doi.org/10.1364/OE.23.001470

[10]. X. Tang, Z.M. Wu, G. Wu, T. Deng, J.J. Chen, L. Fan, Z.Q. Zhong, and G.Q. Xia, “Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source”, Opt. Express 23, 33130-331341 (2015). DOI: https://doi.org/10.1364/OE.23.033130

[11]. M. Virt, E. Mercier, H. Thienpont, K. Panajotov, and M. Sciamanna, “Physical random bit generation from chaotic solitary laser diode”, Opt. Express 22, 17271-17270 (2014). DOI: https://doi.org/10.1364/OE.22.017271

[12]. X. Z. Li, S. C. Chan, “Random bit generation using an optically injected semiconductor laser in chaos with oversampling”, Opt. Lett. 37, 2163-2165 (2012). DOI: https://doi.org/10.1364/OL.37.002163

[13]. P. Ashok, S. Piramasubramanian, “An efficient chaotic optical signal generation scheme using gain level effect in bi-section laser diodes”, Opt. Commun. 475, 126202 (2020). DOI: https://doi.org/10.1016/j.optcom.2020.126202

[14]. P. Li, J. Z. Zhang, Y. Wang, “All-optical fast random number generator”, Opt. Express 18, 20360-9 (2010). DOI: https://doi.org/10.1364/OE.18.020360

[15]. T. Steinle, J. N. Greiner, J. Wachtrup, H. Grarsson, and I. Gerhardt, “Unbiased all-optical random-number generator”, Phys. Rev. X7, 041050 (2017). DOI: https://doi.org/10.1103/PhysRevX.7.041050

[16]. M. Stipčević and J. E. Bowers, “Spatio-temporal optical random number generator,” Opt. Express 23, 11619 (2015). DOI: https://doi.org/10.1364/OE.23.011619

[17]. V. Degiorgio, “Phase shift between transmitted and reflected optical fields of a semi-reflecting lossless mirror is π/2”, Am. J. Phys. 48, 81–82 (1980). DOI: https://doi.org/10.1119/1.12238

[18]. N. Calabretta, et al, “Multiple-output all-optical header processing technique based on two-pulse correlation principle”, Electron. Lett. 37, 1238-1240 (2001). DOI: https://doi.org/10.1049/el:20010857

[19]. S. Shinohara, K. Arai, P. Davis, S. Sunada, and T. Harayama, “Chaotic laser based physical random bit streaming system with a computer application interface”, Opt. Express 25 (6), 6461-6474 (2017). DOI: https://doi.org/10.1364/OE.25.006461

[20]. F. Raffaelli, P. Sibson, J.E. Kennard, D. H. Mahler, M. G. Thompson, J. C. F. Matthews, “Generation of random numbers by measuring phase fluctuations from a laser diode with a silicon-on-insulator chip”, Opt. Express 6, 19730-19741 (2018). DOI: https://doi.org/10.1364/OE.26.019730

[21]. Z. Zheng, Y. Zhang, W. Huang, S. Yu, and H. Guo, “6Gbps real-time optical quantum random number generator based on vacuum fluctuation”, Rev. Scien. Instrum. 90, 043105 (2019). DOI: https://doi.org/10.1063/1.5078547

[22]. Shen H., Cai L., and Shen X., “Performance analysis of TFRE over wireless link with truncated link-level ARQ”. IEEE Trans. Wirel. Commun. 5, 1479-1487(2006). DOI: https://doi.org/10.1109/TWC.2006.1638668

[23]. Zhao J., Liao Q., Huang D. et al, “Performance analysis of the satellite -to-ground continuous-variable quantum key distribution with orthogonal frequency division multiplexed modulation”, Quatum Inf. Process 18, no 36 (2019) DOI: https://doi.org/10.1007/s11128-018-2147-8

[24]. M. Rezaei, Md. H. M. Shamim, M. El. Amraoui, Y. Messaddeq, and M. Rochette, “Nonlinear chalcogenide optical couplers”, Opt. Express 30, 20288-20297 (2022). DOI: https://doi.org/10.1364/OE.458767

[25]. V. Fortin, Y. O. Aydin, M. Bernier, R. Vallee, M. Rochette, F. Chenard, O. Alvarez, L. E. Busse, L. B. Shaw, R. R. Gattas, and J. S. Sangherad, “Post- processing soft glass optical fibers”, Mid-Infrared Fiber Photonics, Elsevier, 233-302, (2022). DOI: https://doi.org/10.1016/B978-0-12-818017-4.00022-7

[26]. M. Rezaei and M. Rochette, “All-chalcogenide ring fiber laser”, Opt. Fiber Technol. 71, 102900 (2022). DOI: https://doi.org/10.1016/j.yofte.2022.102900

[27]. Q. Q. Ho, N. S. Vu, V. H. Nguyen ad T.T.T. Nguyen, “Optical bistability effect of two-port nonlinear fiber Mach-Zehnder interferometers”, Comm. Phys. 21, 161-168 (2011). DOI: https://doi.org/10.15625/0868-3166/21/2/112

[28]. . Solntsev, A. S. et al. “Generation of nonclassical biphoton states through cascaded quantum walks on a nonlinear chip”. Phys. Rev. X 4(3), 031007. https://doi.org/10.1103/PhysRevX.4.031007 (2014). DOI: https://doi.org/10.1103/PhysRevX.4.031007

[29]. Barral, D. et al. “Continuous-variable entanglement of two bright coherent states that never interacted”. Phys. Rev. A 96(5), 053822 (2017). https://doi.org/10.1103/PhysRevA.96.053822. DOI: https://doi.org/10.1103/PhysRevA.96.053822

[30]. Barral, D., Bencheikh, K., Levenson, J. A. & Belabas, N. “Scalable multimode entanglement based on efcient squeezing of propagation eigenmodes”. Phys. Rev. Res. 3(1), 013068 (2021). DOI: https://doi.org/10.1103/PhysRevResearch.3.013068

[31]. Barral, D. et al. “Versatile photonic entanglement synthesizer in the spatial domain”. Phys. Rev. Appl. 14(4), 044025 (2020). DOI: https://doi.org/10.1103/PhysRevApplied.14.044025

[32]. Barral, D. et al. “Quantum state engineering in arrays of nonlinear waveguides”. Phys. Rev. A 102(4), 043706 (2020). DOI: https://doi.org/10.1103/PhysRevA.102.043706

[33]. H. Q. Quy, T. D. Thanh, D. Q. Tuan, D. T. Viet, B. X. Kien, N. L. Le, N. M. Thang, “Nonlinear microscope objective using thin layer of organic dye for optical tweezers”, Eur. Phys. J. D 74,1-6 (2020). DOI: https://doi.org/10.1140/epjd/e2020-100520-7

[34]. K.R. Rekha, and A. Ramalingam, “Nonlinear characteristics and optical limiting effect of oil Red O azo dye in liquid and solid media”, J. Mod. Opt. 56, 1096-1102 (2009). DOI: https://doi.org/10.1080/09500340902944020

[35]. G. P. Agrawal, “Applications of Nonlinear Fiber Optics”, The Institute of Optics University of Rochester, New York, (2001).

[36]. A. Yariv, “Optical Electronics in Modern Communications”, 5th ed., Oxford University Press, New York, (1997).

[37]. Katsuniri Okamoto, “Coupled mode theory, Fundamental of Optical Waveguide”, Third edition, (2022). DOI: https://doi.org/10.1016/B978-0-12-815601-8.50004-5

[38]. S. Savović, A. Djordjevich, B. Drljača, A, Simović and R. Min, “Calculation of the Coupling Coefficient in Step-Index Multimode Polymer Optical Fibers Based on the Far-Field Measurements”, Fronties, Fronties in Phys. 10, Article 927907 (2022). DOI: https://doi.org/10.3389/fphy.2022.927907

[39]. L.B. Samuel, V.L.Peter, “Quantum information with continuous variables”, Rev. Mod. Phys. 77,513(2005). DOI: https://doi.org/10.1103/RevModPhys.77.513

[40]. Fang J. Huang P., and Zeng G., “Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation”, Phys. Rev. Q, 89, 022315(2014). DOI: https://doi.org/10.1103/PhysRevA.89.022315

[41]. N. Gisin, G. Ribordy, W. Titel, H. Zbiden, “Quantum Cryptography”, Rev. Mod. Phys. 74, 145 (2002). DOI: https://doi.org/10.1103/RevModPhys.74.145

[42]. Ikuta T. and Inoue, “Intensity modulation and direct detection quantum key distribution based on quantum noise”, New J. Phys. 18 013018 (2016). DOI: https://doi.org/10.1088/1367-2630/18/1/013018

[43]. H.L. Yin, T.Y. Chen, Z.W. Yu, H. Liu, L. You, Y.H. Zhou, S.J. Chen, Y. Mao, M.Q. Huang, W.J. Zhang, H. Chen, M. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.B. Wang, J.W. Pan, “Measurement device independent quantum key distribution over a 404 km optical fiber”, Phys. Rev. Lett. 117(19), 190501 (2016). DOI: https://doi.org/10.1103/PhysRevLett.117.190501

[44]. Wang T. et al, “High key rate continuous-variable quantum key distribution with a real local oscillator”, Optic. Express 26 (3), 2794-2806 (2018). DOI: https://doi.org/10.1364/OE.26.002794

[45]. Singh H,. et al, “Design and analysis of hight-speed free space optical communication system for supporting fifth generation”, IEEE Photonics J. 13, 1-12 (2021). DOI: https://doi.org/10.1109/JPHOT.2021.3113650

[46]. K. Giuliani, V. Kumar Murty, G. Xu, “Passwords Management via Split-Key”, Journal of Information Security 7, 206-214 (2016). DOI: https://doi.org/10.4236/jis.2016.73016

[47]. R. Sehgal and P. Rathor, “Split Based Encryption in Secure File Transfer, Intern”. J. of Innovative Research in Computer and Communication Engineering 03, 6907-6912 (2015). DOI: https://doi.org/10.15680/ijircce.2015.0307048

[48]. Ö. E. Müstecaplıoglu, “Quantum entanglement in optical fiber”, Optica, OPN (2008). DOI: https://doi.org/10.1364/OPN.19.3.000026

[49]. Robert A. Meyers, “Encyclopedia of Physical Science and Technology”, ScienceDirect, Elsevier, Third Edition, (2001).

Tải xuống

Đã Xuất bản

25-08-2023

Cách trích dẫn

Bui, K., C. Đinh, Nguyen Manh Thang, và Pham Thanh Quang. “Tạo tín hiệu ngẫu Nhiên bằng bộ Liên kết bán Phi tuyến”. Tạp Chí Nghiên cứu Khoa học Và Công nghệ quân sự, vol 89, số p.h 89, Tháng Tám 2023, tr 94-102, doi:10.54939/1859-1043.j.mst.89.2023.94-102.

Số

Chuyên mục

Nghiên cứu khoa học

##category.category##