Vận tốc nhóm ánh sáng có thể điều khiển được trong môi trường hai mức suy biến dưới sự hỗ trợ của từ trường bên ngoài

95 lượt xem

Các tác giả

  • Hoang Minh Dong Trường Đại học Công Thương TP. Hồ Chí Minh
  • Thai Doan Thanh Trường Đại học Công Thương TP. Hồ Chí Minh
  • Nguyen Thi Thu Hien Trường Đại học Công Thương TP. Hồ Chí Minh
  • Trang Huynh Dang Khoa Trường Đại học Công Thương TP. Hồ Chí Minh
  • Le Van Doai Trường Đại học Vinh
  • Nguyen Manh Thang (Tác giả đại diện) Viện Khoa học và Công nghệ quân sự

DOI:

https://doi.org/10.54939/1859-1043.j.mst.93.2024.106-113

Từ khóa:

Trong suốt cảm ứng điện từ; Hấp thụ cảm ứng điện từ; Nguyên tử hai mức suy biến; Chiết suất nhóm; Vận tốc nhóm; Lan truyền ánh sáng siêu chậm và siêu nhanh.

Tóm tắt

Trong nghiên cứu này, chúng tôi đã đề xuất một mô hình đơn giản để điều khiển sự truyền ánh sáng siêu chậm và siêu nhanh thông qua từ trường bên ngoài trong môi trường nguyên tử hai mức suy biến có cấu hình dạng lambda. Kết quả cho thấy rằng các đặc tính hấp thụ-tán sắc và chiết suất nhóm dưới ảnh hưởng của cường độ laser điều khiển và từ trường bên ngoài là được điều khiển. Bằng cách thay đổi hướng và cường độ của từ trường, môi trường có thể chuyển từ trong suốt với tán sắc thường sang hấp thụ mạnh với tán sắc dị thường tại tần số cộng hưởng nguyên tử, tương ứng với sự chuyển từ ánh sáng chậm sang ánh sáng nhanh. Nghiên cứu này có thể cung cấp cho việc hiện thực hóa ứng dụng các thiết bị lưu trữ và chuyển mạch quang từ trong xử lý thông tin lượng tử.

Tài liệu tham khảo

[1]. Boller K J, Imamoglu A, Harris S E, “Observation of electromagnetically induced transparency”, Phys. Rev. Lett. 66, 2593, (1991). DOI: https://doi.org/10.1103/PhysRevLett.66.2593

[2]. Fleischhauer M, Imamoglu A, Marangos J P, “Electromagnetically induced transparency: optics in coherent media”, Rev. Mod. Phys. 77, 633, (2005). DOI: https://doi.org/10.1103/RevModPhys.77.633

[3]. L.V. Hau, S. E. Harris, Z. Dutton, C.H. Bejroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature, 397, 594, (1999). DOI: https://doi.org/10.1038/17561

[4]. Z. Dutton, N.G.C. Slowe, L.V. Hau, “The art of taming light: ultra-slow and stopped light”, Europhysics News, 35, 33–39, (2004). DOI: https://doi.org/10.1051/epn:2004201

[5]. D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation”, Phys. Rev. Lett. 83, 1767, (1999). DOI: https://doi.org/10.1103/PhysRevLett.83.1767

[6]. D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler”, Opt. Exp. 15, 5264, , (2007). DOI: https://doi.org/10.1364/OE.15.005264

[7]. P C Ku, C J Chang-Hasnain and S L Chuang, “Slow light in semiconductor heterostructures”, J. Phys. D: Appl. Phys. 40, 93, (2007). DOI: https://doi.org/10.1088/0022-3727/40/5/R01

[8]. J Mork, P Lunnemann, W Xue, Y Chen, P Kaer and T R Nielsen, “Slow and fast light in semiconductor waveguides”, Semicond. Sci. Technol. 25, 083002, (2010). DOI: https://doi.org/10.1088/0268-1242/25/8/083002

[9]. Agus Muhamad Hatta, Ali A. Kamli, Ola A. Al-Hagan and Sergey A. Moiseev, “Slow light with electromagnetically induced transparency in optical fibre”, J. Phys. B: At. Mol. Opt. Phys. 48, 155502, (2015). DOI: https://doi.org/10.1088/0953-4075/48/15/155502

[10]. C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature. 409, 490-493, (2001). DOI: https://doi.org/10.1038/35054017

[11]. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of Light in Atomic Vapor”, Phys. Rev. Lett. 86, 783–786, (2001). DOI: https://doi.org/10.1103/PhysRevLett.86.783

[12]. D.X. Khoa, N.V. Ai, H. M. Dong, L.V. Doai, and N.H. Bang, “All-optical switching in a medium of a four-level vee-cascade atomic medium”, Opt Quant Electron. 54 (3), 164, (2022). DOI: https://doi.org/10.1007/s11082-022-03530-0

[13]. Lezma A, Barreiro S and Akulshin A M, "Electromagnetically induced absorption", Phys. Rev. A 59, 4732, (1999). DOI: https://doi.org/10.1103/PhysRevA.59.4732

[14]. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, P. R. Hammer, "Observation of Ultraslow and Stored Light Pulses in a Solid", Phys. Rev. Lett. 88, 023602, (2002). DOI: https://doi.org/10.1103/PhysRevLett.88.023602

[15]. M. Mahmoudi, M. Sahrai, H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pump fields”, Phys. Lett. A 357, 66–71, (2006). DOI: https://doi.org/10.1016/j.physleta.2006.04.017

[16]. Vineet Bharti, Vasant Natarajan, “Sub- and superluminal light propagation using a Rydberg state”, Opt. Comm. 392, 180-184, (2017). DOI: https://doi.org/10.1016/j.optcom.2016.12.080

[17]. T. D. Thanh, N. T. Anh, N. T. T. Hien, H. M. Dong, N. X. Hao, D. X. Khoa, N. H. Bang, “Subluminal and superluminal light pulse propagation under an external magnetic field in a vee-type three-level atomic medium”, Photonics Letters of Poland, 13, 4-6, (2021). DOI: https://doi.org/10.4302/plp.v13i1.1076

[18]. L.N.M. Anh, N.H. Bang, N.V. Phu, H.M. Dong, N.T.T. Hien, L.V. Doai, "Slow light amplification in a three-level cascade-type system via spontaneously generated coherence and incoherent pumping", Opt Quant Electron. 55 (3), 246, (2023). DOI: https://doi.org/10.1007/s11082-022-04521-x

[19]. H. Cheng, H. -M. Wang, S. -S. Zhang, P. -P. Xin, J. Luo and H. -P. Liu, “Electromagnetically induced transparency of 87Rb in a buffer gas cell with magnetic field”, J. Phys. B: At. Mol. Opt. Phys. 50, 095401, (2017). DOI: https://doi.org/10.1088/1361-6455/aa6824

[20]. C. Mishra, A. Chakraborty, A. Srivastava, S. K. Tiwari, S. P. Ram, V. B. Tiwari and S. R. Mishr, “Electromagnetically induced transparency in Λ-systems of 87Rb atom in magnetic field”, J. Mod. Opt. 65, 2269-2277, (2018). DOI: https://doi.org/10.1080/09500340.2018.1502824

[21]. Hoang Minh Dong, and Nguyen Huy Bang, “Controllable optical switching in a closed-loop three-level lambda system”, Phy. Scr. 94, 115510, (2019). DOI: https://doi.org/10.1088/1402-4896/ab2a7d

[22]. H.M. Dong, L.T.Y. Nga, and N.H. Bang, “Optical switching and bistability in a degenerated two-level atomic medium under an external magnetic field”, App. Opt. 58, 4192, (2019). DOI: https://doi.org/10.1364/AO.58.004192

[23]. H.M. Dong, L.T.Y. Nga, D.X. Khoa, N.H. Bang, “Controllable ultraslow optical solitons in a degenerated two-level atomic medium under EIT assisted by a magnetic field”, Scientific Reports, 10, 15298, (2020). DOI: https://doi.org/10.1038/s41598-020-72256-4

[24]. N.T. Anh, N.T.T. Hien, T.D. Thanh, L.V. Doai, D.X. Khoa, N.H. Bang, L.T.Y. Nga, and H.M. Dong, “External magnetic field-assisted polarization-dependent optical bistability and multistability in a degenerate two-level EIT medium”, Laser Physics Lett. 20, 035201, (2023). DOI: https://doi.org/10.1088/1612-202X/acb042

[25]. H.M. Dong, T.D. Thanh, N.T.T. Hien, L.T.Y. Nga, N.H. Bang, “Controlling optical switching by an external magnetic field in a degenerate vee-type atomic medium”, Physics Letters A, 469, 128765, (2023). DOI: https://doi.org/10.1016/j.physleta.2023.128765

[26]. Daniel A. Steck, “Rubidium 87D Line Data”, http://steck.us/alkalidata.

Tải xuống

Đã Xuất bản

25-02-2024

Cách trích dẫn

Hoang Minh, D., Thai Doan Thanh, Nguyen Thi Thu Hien, Trang Huynh Dang Khoa, Le Van Doai, và Nguyen Manh Thang. “Vận tốc nhóm ánh sáng Có thể điều khiển được Trong môi trường Hai mức Suy biến dưới sự hỗ trợ của từ trường Bên ngoài”. Tạp Chí Nghiên cứu Khoa học Và Công nghệ quân sự, vol 93, số p.h 93, Tháng Hai 2024, tr 106-13, doi:10.54939/1859-1043.j.mst.93.2024.106-113.

Số

Chuyên mục

Nghiên cứu khoa học

##category.category##