Studying the ability to treat toxic CS compounds and hydrolysis products of toxic CS compounds using the dechlorination method combined with treating heat using catalysts
101 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.96.2024.78-84Keywords:
CS; 2-chlorobenzylidene malononitrile; 2-chlorobenzaldehyde; KOH/PEG.Abstract
Studying and finding techniques to treat CS compounds is an extremely urgent task. This article presents the results of research on the treatment process of CS and hydrolysis products of CS by incineration technology combined with oxidation catalysts. The CS and hydrolysis products of CS are removed from the chlorine atom by KOH/PEG solution to prevent dioxin formation before burning. The results showed that the effectiveness of the removal of chlorine for CS and hydrolysis product of CS depends on temperature, time, PEG grade and KOH/PEG mass proportion. The survey at a temperature of 70oC, after 3 hours, the mass proportion of KOH/PEG400 (30%, 50%) and the removal efficiency of chlorine for CS and hydrolysis product of CS were 94.8% and 95,4%, respectively. The hydrolysis product without removing chlorine and after removing chlorine was burned on a furnace system in the presence of Fe3O4 catalyst proportion was 0.5% and at a temperature was 600 oC, the conversion efficiency into CO2 achieving 92.5% and 97.1%, respectively.
References
[1]. Lâm Vĩnh Ánh, “Đề tài nghiên cứu tiêu hủy chất độc quân sự CS bằng phương pháp phân hủy nhiệt”, Bộ Quốc phòng, (1999).
[2]. Lâm Vĩnh Ánh, “Nghiên cứu xử lý một số hợp chất clo hữu cơ bằng xúc tác đồng oxit”, Luận án tiến sĩ hoá học, Viện khoa học và Công nghệ quân sự, Bộ Quốc phòng, (2010).
[3]. Lâm Vĩnh Ánh, Phạm Văn Âu, Trần Văn Công, “Nghiên cứu các yếu tố ảnh hưởng đến quá trình giải hấp chất da cam dioxin trong đất nhiễm bằng công nghệ giải hấp nhiệt kết hợp xúc tác oxi hóa nano Fe3O4.CaO”, Tạp chí Nghiên cứu Khoa học và Công nghệ quân sự, Số 40, tr.133-139, (2015).
[4]. Nguyễn Văn Minh và cộng sự, “Đề tài quy trình công nghệ thu gom, xử lý chất độc CS tồn lưu sau chiến tranh”, Bộ Quốc phòng, (2002).
[5]. Cafissi, S. Beduschi, V. Balacco, B. Sacchin, “Chemical dechlorination of polychlorinated biphenyls from dielectric oils”, Environ Chem Lett, 5, pp.101-106, (2007). DOI: https://doi.org/10.1007/s10311-006-0087-5
[6]. D.J.Brunelle, D.A.Singleton, “Destruction/removal of polychlorinated biphenyls from non-polar media. Reaction of PCB with poly (ethylene glycol)/KOH”, Chemosphere, Vol.12, No 2, pp.183-196, (1983). DOI: https://doi.org/10.1016/0045-6535(83)90161-3
[7]. D.J.Brunelle, D.A.Singleton, “Chemical reaction of polychlorinated biphenyls on soils with poly (ethylene glycol)/KOH”, Chemosphere, Vol.14, No 2, pp.173-181, (1985). DOI: https://doi.org/10.1016/0045-6535(85)90096-7
[8]. Hu X, Zhu J, Ding Q, “Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies:incineration and base catalyzed decomposition”, J Hazard Mater,191,pp.258-268, (2011). DOI: https://doi.org/10.1016/j.jhazmat.2011.04.073
[9]. Keon Sang Ryoo, Jong-Ha Choi, and Yong Pyo Hong, “Treatment of PCB-Laden Transformer Oil with Polyethylene Glycols and Alkaline Hydroxide”; Bull. Korean Chem. Soc, Vol.36, pp.1082-1088, (2015). DOI: https://doi.org/10.1002/bkcs.10199
[10]. Otto Hutzinger, Ghulam Ghaus Choudhry, Brock G, “Formation of Polychiorinated Dibenzofurans and Dioxins during Combustion”, Environmental Health Perspectives, Vol.60, pp.3-9, (1985). DOI: https://doi.org/10.1289/ehp.85603
[11]. Yoshioka T, Kameda T, Imai S, Noritsune M, Okuwaki A, “Dechlorination of poly (vinylidene chloride) in NaOH/ethylene glycol as a function of NaOH concentration, temperature, and solvent”. Polym Degrad Stab 93, pp.1979-1984, (2008). DOI: https://doi.org/10.1016/j.polymdegradstab.2008.06.008
[12]. Yaojian Li Zhiqin Huang, Yongxiang Xu, and Hongzhi Sheng, “Plasma-Arc Technology for the Thermal Treatment of Chemical Wastes", Environmental engineering science, Vol.26, No 4, pp.731-737, (2009). DOI: https://doi.org/10.1089/ees.2008.0222