Nghiên cứu hiệu quả xử lý Mononitrotoluen trong môi trường nước bằng quá trình Sono-Photo-Fenton kết hợp xúc tác dị thể nano sắt hóa trị 0 (nZVI)

7 lượt xem

Các tác giả

  • Phạm Sơn Tùng (Tác giả đại diện) Viện Công nghệ mới, Viện Khoa học và Công nghệ quân sự
  • Nguyễn Văn Huống Viện Công nghệ mới, Viện Khoa học và Công nghệ quân sự
  • Phạm Hoài Nam Viện Công nghệ mới, Viện Khoa học và Công nghệ quân sự
  • Đoàn Công Danh Viện Công nghệ mới, Viện Khoa học và Công nghệ quân sự
  • Nguyễn Thị Dung Viện Công nghệ mới, Viện Khoa học và Công nghệ quân sự
  • Vũ Thị Vui Viện Công nghệ mới, Viện Khoa học và Công nghệ quân sự
  • Nguyễn Thành Trung Khoa Môi trường, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội
  • Phạm Thị Thúy Khoa Môi trường, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội
  • Nguyễn Văn Hoàng Viện Công nghệ mới, Viện Khoa học và Công nghệ quân sự

DOI:

https://doi.org/10.54939/1859-1043.j.mst.FEE.2024.274-279

Từ khóa:

Mononitrotoluen; Sono-Photo-Fenton-like; nZVI; RSM.

Tóm tắt

Nước thải chứa thành phần Mononitrotoluene (MNT) có ảnh hưởng đến sức khỏe con người, sinh vật và môi trường xung quanh. Trong nghiên cứu này, hiệu quả xử lý MNT trong môi trường nước của quá trình Sono-Photo- Fenton-like kết hợp vật liệu nano sắt hóa trị 0 (nZVI) được nghiên cứu đánh giá. Trong đó, ảnh hưởng của các yếu tố pH, nồng độ H2O2, nồng độ nZVI, thời gian phản ứng đến hiệu quả xử lý được nghiên cứu đánh giá thông qua quy hoạch thực nghiệm bằng phương pháp bề mặt đáp ứng (RSM). Kết quả nghiên cứu cho thấy hiệu quả xử lý MNT bằng quá trình Sono- Photo-Fenton kết hợp nZVI đạt 100% tại điều kiện pH = 2, C0MNT = 100 mg/L, CnZVI = 0,5 mM; CH2O2 = 5 mM, thời gian phản ứng 30 phút.

Tài liệu tham khảo

[1]. "Toxicology and carcinogenesis studies of p-nitrotoluene (CAS no. 99-99-0) in F344/N rats and B6C3F(1) mice (feed studies)," Natl Toxicol Program Tech Rep Ser, no. 498, pp. 1-277, (2002).

[2]. R. Kumar, P. B. Wagh, S. V. Ingale, and K. D. J. D. S. J. Joshi, "Degradation of Mononitrotoluene by Electrochemical Method," (2021). DOI: https://doi.org/10.14429/dsj.71.16376

[3]. M. Rostami, H. Mazaheri, A. Hassani Joshaghani, and A. Shokri, "Using Experimental Design to Optimize the Photo-degradation of P-Nitro Toluene by Nano-TiO2 in Synthetic Wastewater," International Journal of Engineering, vol. 32, no. 8, pp. 1074-1081, (2019). DOI: https://doi.org/10.5829/ije.2019.32.08b.03

[4]. C. Xia et al., "Removal of organic pollutants from mononitrotoluene (MNT) wastewater by reduced pressure distillation," Separation and Purification Technology, vol. 120, pp. 1-5, (2013). DOI: https://doi.org/10.1016/j.seppur.2013.09.014

[5]. N. Thomas, D. D. Dionysiou, and S. C. Pillai, "Heterogeneous Fenton catalysts: A review of recent advances," Journal of Hazardous Materials, vol. 404, p. 124082, (2021). DOI: https://doi.org/10.1016/j.jhazmat.2020.124082

[6]. H. Nguyen, S. Pham, T. Vu, H. Nguyen, and D. La, "Effective treatment of 2,4,6-trinitrotoluene from aqueous media using a sono–photo-Fenton-like process with a zero-valent iron nanoparticle (nZVI) catalyst," RSC Advances, vol. 14, pp. 23720-23729, (2024.). DOI: https://doi.org/10.1039/D4RA03907F

[7]. E. C. A. Rubio-Clemente, G.A. Peñuela, "Petrochemical wastewater treatment by photo-Fenton process," Water, Air, & Soil Pollution, vol. 226, p. 62, (2015). DOI: https://doi.org/10.1007/s11270-015-2321-x

[8]. J. M. Monteagudo et al., "Ultrasound-assisted homogeneous photocatalytic degradation of Reactive Blue 4 in aqueous solution," Applied Catalysis B: Environmental, vol. 152-153, pp. 59-67, (2014). DOI: https://doi.org/10.1016/j.apcatb.2014.01.014

[9]. Q. Zhou et al., "Degradation kinetics of sodium alginate via sono-Fenton, photo-Fenton and sono-photo-Fenton methods in the presence of TiO2 nanoparticles," Polymer Degradation and Stability, vol. 135, pp. 111-120, (2017). DOI: https://doi.org/10.1016/j.polymdegradstab.2016.11.012

[10]. Y. Zhu et al., "A critical review on metal complexes removal from water using methods based on Fenton-like reactions: Analysis and comparison of methods and mechanisms," Journal of Hazardous Materials, vol. 414, p. 125517, (2021). DOI: https://doi.org/10.1016/j.jhazmat.2021.125517

[11]. A. Khataee et al., "Heterogeneous sono-Fenton process using pyrite nanorods prepared by non-thermal plasma for degradation of an anthraquinone dye," Ultrasonics Sonochemistry, vol. 32, pp. 357-370, (2016). DOI: https://doi.org/10.1016/j.ultsonch.2016.04.002

[12]. X. Zhong et al., "Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono–photo-Fenton process," Separation and Purification Technology, vol. 80, no. 1, pp. 163-171, (2011). DOI: https://doi.org/10.1016/j.seppur.2011.04.024

[13]. C. Lai et al., "Fabrication of novel magnetic MnFe2O4/bio-char composite and heterogeneous photo-Fenton degradation of tetracycline in near neutral pH," Chemosphere, vol. 224, pp. 910-921, (2019). DOI: https://doi.org/10.1016/j.chemosphere.2019.02.193

[14]. M. Dukkanci, "Sono-photo-Fenton oxidation of bisphenol-A over a LaFeO(3) perovskite catalyst," Ultrason Sonochem, vol. 40, pp. 110-116, (2018). DOI: https://doi.org/10.1016/j.ultsonch.2017.04.040

[15]. C. C. W. Qu et al., "Electron-rich/poor reaction sites enable ultrafast confining Fenton-like processes in facet-engineered BiOI membranes for water purification," Appl. Catal. B Environ, vol. 304, p. 120970, (2022). DOI: https://doi.org/10.1016/j.apcatb.2021.120970

[16]. S. Shafieiyoun, Ebadi, T., & Nikazar, M., "Treatment of landfill leachate by Fenton process with nano sized zero valent iron particles," International Journal of Environmental Research and Public Health, vol. 6, pp. 119–128, (2012).

[17]. Z. G. X. Pan et al., "Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: a review," Sci. Total Environ., vol. 754, p. 142104, (2021). DOI: https://doi.org/10.1016/j.scitotenv.2020.142104

[18]. G. Z. J. Zhang et al., "Carbon nanodot-modi fi ed FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation," Appl. Catal. B Environ., vol. 266, p. 118665, (2020). DOI: https://doi.org/10.1016/j.apcatb.2020.118665

[19]. L. G. Devi et al., "Kinetic modeling based on the non-linear regression analysis for the degradation of Alizarin Red S by advanced photo Fenton process using zero valent metallic iron as the catalyst," Journal of Molecular Catalysis A: Chemical, vol. 314, pp. 88–94, (2009). DOI: https://doi.org/10.1016/j.molcata.2009.08.021

Tải xuống

Đã Xuất bản

06-12-2024

Cách trích dẫn

Phạm Sơn Tùng, Nguyễn Văn Huống, Phạm Hoài Nam, Đoàn Công Danh, Nguyễn Thị Dung, Vũ Thị Vui, Nguyễn Thành Trung, Phạm Thị Thúy, và Nguyễn Văn Hoàng. “Nghiên cứu hiệu Quả xử Lý Mononitrotoluen Trong môi trường nước bằng Quá trình Sono-Photo-Fenton kết hợp Xúc tác dị thể Nano sắt hóa trị (nZVI)”. Tạp Chí Nghiên cứu Khoa học Và Công nghệ quân sự, số p.h FEE, Tháng Chạp 2024, tr 274-9, doi:10.54939/1859-1043.j.mst.FEE.2024.274-279.

Số

Chuyên mục

Hóa học, Sinh học & Môi trường

Các bài báo được đọc nhiều nhất của cùng tác giả