STUDY ON THE THERMAL DECOMPOSITION KINETIC OF HMX AND OCFOL EXPLOSIVES
202 viewsKeywords:
Kinetic parameters; Thermal decomposition; HMX; Ocfol.Abstract
The thermal decomposition kinetics of Octogen and Ocfol (phlegmatized HMX) explosives have been studied by thermal gravimetric analysis (TG/DTG) and differential thermal analysis (DTA) techniques in the different heating rates. The thermal decomposition kinetic parameters were determined by traditional methods (Kisinger method, Ozawa method) and model-free method (Kisinger-Akahira-Sunose method). Results showed that the activation energy of thermal decomposition of HMX and Ocfol explosives were in the range (294-336) and (216-239) kJ/mol, respectively. In addition, decomposition rate constants showed that HMX is more thermostable than Ocfol. The kinetic parameters for the thermal decomposition of HMX in the low temperature region are in good agreement with data, obtained in the region of the combustion surface temperatures.
References
[1]. Agrawal, J.L., Hodgson, R.D., “Organic Chemistry of Explosives,” John Wiley&Sons Ltd, Chichester, (2007).
[2]. M. Beckstead, “Modeling calculations for HMX composite propellants,” in: AIAA, ASME, SAE, and ASEE Joint Propulsion Conference, (1980).
[3]. N. Kubota, N. Hirata, “Super-rate burning of catalyzed HMX propellants,” Symp.,Int., Combust. Vol. 21 (1), pp. 1943–1951, (1988).
[4]. Agrawal JP, “High energy materials: propellants, explosives and pyrotechnics,” Hoboken, NJ: Wiley, (2010).
[5]. Zhan T, Li Y, Qiao XJ, “On thermal decomposition kinetics and thermal safety of HMX,” Chin. J. Energetic Mater., Vol. 19(4), pp. 396–400, (2011).
[6]. Wang Y, Jiang W, Song XL, “Insensitive HMX (octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetraocine) nanocrystals fabricated by high-yield, low-cost mechanical milling,” Cent Eur. J. Energetic Mater., Vol. 10(2), pp. 277–287, (2013).
[7]. Kai Wang, Junlin Wang, Tianji Guo, Wei Wang, Dabin Liu, “Research on the thermal decomposition kinetics and the isothermal stability of HMX,” J. Therm. Anal. Calorim. Vol. 135, pp. 2513–2518, (2019).
[8]. H. R. Pouretedal, S. Damiri, A. Malekzadeh, “Kinetic study on triplet of thermal decomposition reaction of ocfol explosive by non-isothermal differential thermal analysis method,” J. Energetic Mater. Spring 2016, Vol. 11 (29); pp. 11–16, (2016).
[9]. O. Ordzhonikidze, A. Pivkina, Yu. Frolov, N. Muravyev, K. Monogarov, “Comparative study of HMX and CL-20,” J. Therm. Anal. Calorim., Vol. 105, pp. 529–534, (2011).
[10]. Brown ME, Dollimore D, Galwey AK, “Reactions in the solid state,” Amsterdam: Elsevier, (1980).
[11]. Giese B, Bamford CH, Tipper CFH et al., “Comprehensive chemical kinetics, liquid-phase oxidation”, Vol. 16, Elsevier, Amsterdam, (1980).
[12]. H. Kissinger, “Variation of peak temperature with heating rate in differential thermal analysis,” J. Res. Nat. Bur. Stand., Vol. 57, pp. 217-221, (1956).
[13]. T. Ozawa, “A new method of analyzing thermogravimetric data,” B. Chem. Soc. Jpn., Vol. 38, pp. 1881-1886, (1965).
[14]. J. Flynn, and L. Wall, “A quick, direct method for the determination of activation energy from thermogravimetric data,” J. Polym. Sci. Pol. Lett., Vol. 4, pp. 323-328, (1996).
[15]. Singh, A., Sharma, T.C., Singh, V. et al, “Studies on the thermal stability and kinetic parameters of naturally aged Octol formulation,” J. Therm. Anal. Calorim., (2020).
[16]. Q.-L. Yan, S. Zeman, and A. Elbeih, “Thermal behavior and decomposition kinetics of Viton A bonded explosives containing attractive cyclic nitramines,” Thermochim. Acta, Vol. 562, pp. 56–64, (2013).
[17]. S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. P ́erez-Maqueda, C. Popescu, and N. Sbirrazzuoli, “ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data,” Thermochim. Acta, Vol. 520(1-2), pp. 1–19, (2011).
[18]. Sinditskii VP, Egorshev VY, Serushkin VV et al., “Evaluation of decomposition kinetics of energetic materials in the combustion wave,” Thermochim. Acta., Vol. 496(1–2), pp. 1–12, (2009).