Recent advances in synthesis of noble metal and non-noble metal catalytic materials for hydrogen evolution reaction

194 views

Authors

  • Nguyen Tien Thanh Institute of Materials Science, Vietnam Academy of Science and Technology
  • Dao Son Lam Institute of Materials Science, Vietnam Academy of Science and Technology
  • Nguyen Hoang Tung Institute of Materials Science, Vietnam Academy of Science and Technology
  • Bui Thi Hoa Institute of Materials Science, Vietnam Academy of Science and Technology
  • Do Hung Manh Institute of Materials Science, Vietnam Academy of Science and Technology
  • Nguyen Thanh Tung (Corresponding Author) Institute of Materials Science, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.85.2023.3-17

Keywords:

Catalysis; Hydrogen evolution reaction2D materials.

Abstract

Since the 20th century, the world has been challenged by the rapid exhaustion of fossil energy resources and their global influence on climate change, and environmental pollution. In this regard, hydrogen has been considered as an endless and green source of energy to replace fossil fuels, playing a vital role in the hydro economy of the 21st century onwards. Numerous catalytic materials have been studied and developed to accelerate the hydrogen evolution reaction rate and efficiency. Considerable efforts have been paid to look for strong, stable, and economical electrochemical catalysts for hydrogen production and fuel cells. In this report, we review recent advances in the synthesis of non-noble metal catalytic materials.

References

[1]. Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. “Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review”. Adv. Funct. Mater. 28, 1803291, (2018). DOI: https://doi.org/10.1002/adfm.201803291

[2]. Debe, M.K. “Electrocatalyst approaches and challenges for automotive fuel cells”. Nat. Cell Biol. 486, 43–51, (2012) DOI: https://doi.org/10.1038/nature11115

[3]. Markovic, N.; Gasteiger, H.; Ross, P.N. “Kinetics of Oxygen Reduction on Pt(hkl) Electrodes: Implications for the Crystallite Size Effect with Supported Pt Electrocatalysts”. J. Electrochem. Soc. 144, 1591–1597, (1997). DOI: https://doi.org/10.1149/1.1837646

[4]. Schlapbach, L.; Züttel, A. “Hydrogen-storage materials for mobile applications”. Nat. Cell Biol. 414, 353–358, (2001). DOI: https://doi.org/10.1038/35104634

[5]. Sarkar, S.; Peter, S.C. “An overview on Pd-based electrocatalysts for the hydrogen evolution reaction”. Inorg. Chem. Front. 5, 2060–2080, (2018). DOI: https://doi.org/10.1039/C8QI00042E

[6]. Zou, X.; Zhang, Y. “Noble metal-free hydrogen evolution catalysts for water splitting”. Chem. Soc. Rev. 44, 5148–5180, (2015). DOI: https://doi.org/10.1039/C4CS00448E

[7]. Turner, J.A. Sustainable Hydrogen Production. Sci. 305, 972–974, (2004). DOI: https://doi.org/10.1126/science.1103197

[8]. Dresselhaus, M.S.; Thomas, I.L. “Alternative energy technologies”. Nat. Cell Biol. 414, 332–337, (2001). DOI: https://doi.org/10.1038/35104599

[9]. Morales-Guio, C.G.; Stern, L.-A.; Hu, X. “Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution”. Chem. Soc. Rev. 43, 6555–6569, (2014). DOI: https://doi.org/10.1039/C3CS60468C

[10]. Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. “MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions”. Chem. Soc. Rev. 49, 1414–1448, (2020). DOI: https://doi.org/10.1039/C9CS00906J

[11]. Bhalothia, D.; Huang, T.-H.; Chou, P.-H.; Chen, P.-C.; Wang, K.-W.; Chen, T.-Y. “CO-Reductive and O2-Oxidative Annealing Assisted Surface Restructure and Corresponding Formic Acid Oxidation Performance of PdPt and PdRuPt Nanocatalysts”. Sci. Rep. 10, 8457, (2020). DOI: https://doi.org/10.1038/s41598-020-65393-3

[12]. Bhalothia, D., Krishnia, L., Yang, S.-S., Yan, C., Hsiung, W.-H., Wang, K.-W., & Chen, T.-Y. “Recent Advancements and Future Prospects of Noble Metal-Based Heterogeneous Nanocatalysts for Oxygen Reduction and Hydrogen Evolution Reactions”. Applied Sciences, 10(21), 7708, (2020). doi:10.3390/app10217708 DOI: https://doi.org/10.3390/app10217708

[13]. Xiong B, Chen L, Shi J. “Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting”. ACS Catal. 8:3688–3707, (2018). DOI: https://doi.org/10.1021/acscatal.7b04286

[14]. Yu, J., Dai, Y., He, Q., Zhao, D., Shao, Z., & Ni, M. “A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes”. Materials Reports: Energy, 1(2), 100024, (2021). doi:10.1016/j.matre.2021.100024 DOI: https://doi.org/10.1016/j.matre.2021.100024

[15]. He J, Peng Y, Sun Z, et al. “Realizing high water splitting activity on Co3O4 nanowire arrays under neutral environment”. Electrochim Acta. 119:64–71, (2014). DOI: https://doi.org/10.1016/j.electacta.2013.11.138

[16]. Liu J, Zhu D, Ling T, Vasileff A, Qiao S-Z. “S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH”. Nanomater Energy. 40:264–273, (2017). DOI: https://doi.org/10.1016/j.nanoen.2017.08.031

[17]. Zhang L, Liu B, Zhang N, Ma M. “Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media”. Nano Res. 11:323–333, (2018). DOI: https://doi.org/10.1007/s12274-017-1634-z

[18]. Hao S, Yang Y. “Water splitting in near-neutral media: using an Mn-Co-based nanowire array as a complementary electrocatalyst”. J Mater Chem. 5: 12091–12095, (2017). DOI: https://doi.org/10.1039/C7TA03198J

[19]. Li R-Q, Hu P, Miao M, et al. “CoO-modified Co4N as a heterostructured electrocatalyst for highly efficient overall water splitting in neutral media”. J Mater Chem. 6: 24767–24772, (2018). DOI: https://doi.org/10.1039/C8TA08519F

[20]. Xie L, Qu F, Liu Z, et al. “In situ formation of a 3D core/shell structured Ni3N@ Ni-Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions”. J Mater Chem. 5:7806–7810, (2017). DOI: https://doi.org/10.1039/C7TA02333B

[21]. Liu Z, Tan H, Liu D, et al. “Promotion of overall water splitting activity over a wide pH range by interfacial electrical effects of metallic NiCo-nitrides nanoparticle/NiCo2O4 nanoflake/graphite fibers”. Adv Sci. 6, 1801829, (2019). DOI: https://doi.org/10.1002/advs.201801829

[22]. Pu Z, Xue Y, Li W, Amiinu IS, Mu S. “Efficient water splitting catalyzed by flexible NiP2 nanosheet array electrodes under both neutral and alkaline solutions”. New J Chem. 41:2154–2159, (2017). DOI: https://doi.org/10.1039/C6NJ03194C

[23]. Liu T, Xie L, Yang J, et al. “Self-standing CoP nanosheets array: a three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media”. ChemElectroChem. 4:1840–1845, (2017). DOI: https://doi.org/10.1002/celc.201700392

[24]. Lai C, Liu X, Wang Y, et al. “Modulating ternary Mo-Ni-P by electronic reconfiguration and morphology engineering for boosting all-pH electrocatalytic overall water splitting”. Electrochim Acta. 330, 135294, (2020) DOI: https://doi.org/10.1016/j.electacta.2019.135294

[25]. Wu R, Xiao B, Gao Q, et al. “A janus nickel cobalt phosphide catalyst for highefficiency neutral-pH water splitting”. Angew Chem Int Ed. 130:15671 15675, (2018). DOI: https://doi.org/10.1002/ange.201808929

[26]. Anantharaj S, Kennedy J, Kundu S. “Microwave-initiated facile formation of Ni3Se4 nanoassemblies for enhanced and stable water splitting in neutral and alkaline media”. ACS Appl Mater Interfaces. 9:8714–8728, (2017). DOI: https://doi.org/10.1021/acsami.6b15980

[27]. Yang Y, Yao H, Yu Z, et al. “Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range”. J Am Chem Soc. 141:10417–10430, (2019). DOI: https://doi.org/10.1021/jacs.9b04492

[28]. Li K, Zhang J, Wu R, Yu Y, Zhang B. “Anchoring CoO domains on CoSe2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media”. Adv Sci. 3, 1500426, (2016). DOI: https://doi.org/10.1002/advs.201500426

[29]. Tao L, Huang M, Guo S, et al. “Surface modification of NiCo2Te4 nanoclusters: a highly efficient electrocatalyst for overall water-splitting in neutral solution”. Appl Catal B Environ. 254:424–431, (2019). DOI: https://doi.org/10.1016/j.apcatb.2019.05.010

[30]. Najafi L, Bellani S, Oropesa-Nuneez R, et al. “Carbon nanotube-supported MoSe2 holey flake: Mo2C ball hybrids for bifunctional pH-universal water splitting”. ACS Nano. 13:3162–3176, (2019). DOI: https://doi.org/10.1021/acsnano.8b08670

[31]. Wang L, Duan X, Liu X, et al. “Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions”. Adv Energy Mater. 10, 1903137, (2020). DOI: https://doi.org/10.1002/aenm.201903137

[32]. Yang L, Deng Y, Zhang X, Liu H, Zhou W. “MoSe2 nanosheet/MoO2 nanobelt/carbon nanotube membrane as flexible and multifunctional electrodes for full water splitting in acidic electrolyte”. Nanoscale. 10:9268–9275, (2018). DOI: https://doi.org/10.1039/C8NR01572D

[33]. Xiong Q, Zhang X, Wang H, et al. “One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions”. Chem Commun. 54:3859–3862, (2018). DOI: https://doi.org/10.1039/C8CC00766G

[34]. Zeng L, Sun K, Chen Y, et al. “Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst”. J Mater Chem. 7:16793–16802, (2019). DOI: https://doi.org/10.1039/C9TA05601G

[35]. Tan Y, Luo M, Liu P, et al. “Three-Dimensional nanoporous Co9S4P4 pentlandite as a bifunctional electrocatalyst for overall neutral water splitting”. ACS Appl Mater Interfaces. 11:3880–3888, (2019). DOI: https://doi.org/10.1021/acsami.8b17961

[36]. Ray C, Lee SC, Sankar KV, et al. “Amorphous phosphorus-incorporated cobalt molybdenum sulfide on carbon cloth: an efficient and stable electrocatalyst for enhanced overall water splitting over entire pH values”. ACS Appl Mater Interfaces. 9:37739–37749, (2017). DOI: https://doi.org/10.1021/acsami.7b11192

[37]. Lei L, Huang D, Zhang C, Deng R, Chen S, Li Z. “F dopants triggered active sites in bifunctional cobalt sulfide@ nickel foam toward electrocatalytic overall water splitting in neutral and alkaline media: experiments and theoretical calculations”. J Catal. 385:129–139, (2020). DOI: https://doi.org/10.1016/j.jcat.2020.03.012

[38]. Li J, Xia Z, Zhou X, Qin Y, Ma Y, Qu Y. “Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis”. Nano Res. 10:814–825, (2017). DOI: https://doi.org/10.1007/s12274-016-1335-z

[39]. Bhosale, R., Tonda, S., Kumar, S., & Ogale, S. B. “Two-dimensional materials for photocatalytic water splitting and CO2 reduction. Nanostructured Photocatalysts”, 173–227, (2020). doi:10.1016/b978-0-12-817836-2.00007-7 DOI: https://doi.org/10.1016/B978-0-12-817836-2.00007-7

[40]. S. Ida, T. Ishihara, “Recent progress in two-dimensional oxide photocatalysts for water splitting”, J. Phys. Chem. Lett. 5, 25332542, (2014). DOI: https://doi.org/10.1021/jz5010957

[41]. J. Di, J. Xiong, H. Li, Z. Liu, “Ultrathin 2D photocatalysts: electronicstructure tailoring, hybridization, and applications”, Adv. Mater. 30, 130, (2018). DOI: https://doi.org/10.1002/adma.201704548

[42]. B. Luo, G. Liu, L. Wang, “Recent advances in 2D materials for photocatalysis”, Nanoscale 8, 69046920, (2016). DOI: https://doi.org/10.1039/C6NR00546B

[43]. H. Honda, H. Takamatsu, J.J. Wei, “Electrochemical photolysis of water at a semicomductor electrode”, Nature 68, 23272332, (1972).

[44]. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, et al., “Solvothermal synthesis and photoreactivity of anatase TiO2”, J. Am. Chem. Soc. 131, 40784083, (2009). DOI: https://doi.org/10.1021/ja808790p

[45]. L. Wang, T. Sasaki, “Titanium oxide nanosheets: graphene analogues with versatile functionalities”, Chem. Rev. 114, 94559486, (2014). DOI: https://doi.org/10.1021/cr400627u

[46]. H. Sato, K. Ono, T. Sasaki, A. Yamagishi, “First-principles study of twodimensional titanium dioxides”, J. Phys. Chem. B 107, 98249828, (2003). DOI: https://doi.org/10.1021/jp035017t

[47]. Y. Matsumoto, S. Ida, T. Inoue, “Photodeposition of metal and metal oxide at the TiOx nanosheet to observe the photocatalytic active site”, J. Phys. Chem. C 112, 1161411616, (2008). DOI: https://doi.org/10.1021/jp804625r

[48]. Y.X. Shan Gaoa, Y. Sun, F. Lei, J. Liu, L. Liang, T. Li, et al., “Freestanding atomically-thin cuprous oxide sheets for improved visiblelight photoelectrochemical water splitting”, Nano Energy 8, 205213, (2014). DOI: https://doi.org/10.1016/j.nanoen.2014.05.017

[49]. D. Mateo, I. Esteve-adell, J. Albero, A. Primo, H. Garcı ´a, Applied Catalysis B: “Environmental Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting”, Appl. Catal. B, Environ. 201, 582590, (2017). DOI: https://doi.org/10.1016/j.apcatb.2016.08.033

[50]. Y. Zhou, Y. Zhang, M. Lin, J. Long, Z. Zhang, H. Lin, et al., “Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis”, Nat. Commun. 6, 18, (2015). DOI: https://doi.org/10.1038/ncomms9340

[51]. J.K. Xu Fang, C. Huimin, X. Chaoya, W. Dapeng, G. Zhiyong, Q. Zhang, “Ultra-thin Bi2WO6 porous nanosheets with high lattice coherence for enhanced performance for photocatalytic reduction of Cr (VI)”, J. Colloid Interface Sci. 525, 97106, (2018). DOI: https://doi.org/10.1016/j.jcis.2018.04.057

[52]. Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, “2D Transition-metaldichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions”, Adv. Mater. 28, 19171933, (2016). DOI: https://doi.org/10.1002/adma.201503270

[53]. H.Z. Manish Chhowalla, H.S. Shin, G. Eda, L.-J. Li, “The chemistry of twodimensional layered transition metal dichalcogenide nanosheets”, Nat. Chem. 5, 263275, (2013). DOI: https://doi.org/10.1038/nchem.1589

[54]. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, “The electronic properties of graphene”, Rev. Mod. Phys. 81, 109162, (2009). DOI: https://doi.org/10.1103/RevModPhys.81.109

[55]. G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J.R. Gong, “Graphene-based materials for hydrogen generation from light-driven water splitting”, Adv. Mater. 25, 38203839, (2013). DOI: https://doi.org/10.1002/adma.201301207

[56]. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, et al., “Graphene and graphene oxide: synthesis, properties, and applications”, Adv. Mater. 22, 39063924, (2010). DOI: https://doi.org/10.1002/adma.201001068

[57]. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, et al., “Preparation and characterization of graphene oxide paper”, Nature 448, 457460, (2007). DOI: https://doi.org/10.1038/nature06016

[58]. W.S. Hummers Jr, R.E. Offeman, “Preparation of graphitic oxide” 13391339, J. Am. Chem. Soc. 80, 1339, (1958). DOI: https://doi.org/10.1021/ja01539a017

[59]. Q. Xiang, J. Yu, M. Jaroniec, “Graphene-based semiconductor photocatalysts”, Chem. Soc. Rev. 41, 782796, (2012). DOI: https://doi.org/10.1039/C1CS15172J

[60]. T. Sasaki, M. Watanabe, “Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties”, J. Phys. Chem. B 5647, 1015910161, (1997). DOI: https://doi.org/10.1021/jp9727658

[61]. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, “P25-graphene composite as a high performance photocatalyst”, ACS Nano 4, 380386, (2009). DOI: https://doi.org/10.1021/nn901221k

[62]. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, et al., “Hierarchically ordered macrographene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities”, ACS Nano 5, 590596, (2010). DOI: https://doi.org/10.1021/nn102767d

[63]. Q. Xiang, J. Yu, M. Jaroniec, “Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets”, Nanoscale 3, 36703678, (2011). DOI: https://doi.org/10.1039/c1nr10610d

[64]. A. Kudo, Y. Miseki, “Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev. 38, 253278, (2009). DOI: https://doi.org/10.1039/B800489G

[65]. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, et al., “A metal-free polymeric photocatalyst for hydrogen production from water under visible light”, Nat. Mater. 8, 7680, (2009). DOI: https://doi.org/10.1038/nmat2317

[66]. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, “Graphitic carbon nitride (gC3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?” Chem. Rev. 116, 71597329, (2016). DOI: https://doi.org/10.1021/acs.chemrev.6b00075

[67]. J. Zhu, P. Xiao, H. Li, S.A.C. “Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis”, ACS Appl. Mater. Interfaces 6, 1644916465, (2014). DOI: https://doi.org/10.1021/am502925j

[68]. B. Li, C. Lai, G. Zeng, D. Huang, L. Qin, M. Zhang, et al., “Black phosphorus, a rising star 2d nanomaterial in the post-graphene era: synthesis, properties, modifications, and photocatalysis applications”, Small 15, 130, (2019). DOI: https://doi.org/10.1002/smll.201804565

[69]. J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus”, Nat. Commun. 5, 17, (2014). DOI: https://doi.org/10.1038/ncomms5475

Published

28-02-2023

How to Cite

Nguyễn Tiến Thành, Đào Sơn Lâm, Nguyễn Hoàng Tùng, Bùi Thị Hoa, Đỗ Hùng Mạnh, and Nguyễn Thanh Tùng. “Recent Advances in Synthesis of Noble Metal and Non-Noble Metal Catalytic Materials for Hydrogen Evolution Reaction”. Journal of Military Science and Technology, vol. 85, Feb. 2023, pp. 3-17, doi:10.54939/1859-1043.j.mst.85.2023.3-17.