Bộ điều khiển bên của xe tự hành dựa trên bộ điều khiển trượt kết hợp với luật tiệm cận tiếp cận theo cấp số nhân

258 lượt xem

Các tác giả

  • Nguyễn Văn Trung Trường Điện - Điện tử, Đại học Bách khoa Hà Nội
  • Trần Ngọc Châu Trường Điện - Điện tử, Đại học Bách khoa Hà Nội
  • Nguyễn Như Toàn Trường Điện - Điện tử, Đại học Bách khoa Hà Nội
  • Lê Đức Thịnh Trường Điện - Điện tử, Đại học Bách khoa Hà Nội
  • Nguyễn Danh Huy Trường Điện - Điện tử, Đại học Bách khoa Hà Nội
  • Nguyễn Tùng Lâm Trường Điện - Điện tử, Đại học Bách khoa Hà Nội
  • Hoàng Đức Chính (Tác giả đại diện) Trường Điện - Điện tử, Đại học Bách khoa Hà Nội

DOI:

https://doi.org/10.54939/1859-1043.j.mst.FEE.2022.65-72

Từ khóa:

Điều khiển bên của xe; Xe tự hành; Bộ điều khiển trượt; Luật tiệm cận; Ổn định Lyapunov; Tự động chuyển làn, động lực học bên.

Tóm tắt

Bài báo này sẽ trình bày về điều khiển bên cho ô tô tự hành bằng cách sử dụng bộ điều khiển trượt dựa trên luật tiệm cận để đảm bảo tín hiệu điều khiển không bị dao động như bộ điều khiển trượt truyền thống. Theo phương pháp giảm bậc mô hình, ô tô sẽ được chia thành động lực học chậm và động lực học nhanh và được điều khiển riêng biệt bởi kỹ thuật điều khiển trên. Sự ổn định của hệ thống sẽ được chứng minh bằng cách định nghĩa hàm Lyapunov và dựa trên lý thuyết ổn định Lyapunov. Hiệu quả của bộ điều khiển mới là tốt hơn bộ điều khiển cũ khi tín hiệu góc lái không bị thay đổi quá nhiều, đảm bảo cơ cấu chấp hành của xe sẽ đáp ứng được và giúp xe bám quỹ đạo mong muốn trong thực tế. Kết quả mô phỏng của tín hiệu góc lái, độ bám quỹ đạo và góc xoay thân xe của hai bộ điều khiển sẽ được minh họa và so sánh bằng phần mềm Matlab/Simulink.

Tài liệu tham khảo

[1]. C. Badue et al., “Self-Driving Cars: A Survey,” Expert Syst Appl, vol. 165, p. 113816, Jan. (2019), Accessed: Aug. 22, 2022. [Online]. Available: http://arxiv.org/abs/1901.04407

[2]. C. M. Filho, D. F. Wolf, V. Grassi, and F. S. Osorio, “Longitudinal and lateral control for autonomous ground vehicles,” IEEE Intelligent Vehicles Symposium, Proceedings, pp. 588–593, (2014), doi: 10.1109/IVS.2014.6856431.

[3]. R. Rajamani, “Vehicle Dynamics and Control”. Boston, MA: Springer US, (2012). doi: 10.1007/978-1-4614-1433-9.

[4]. R. Marino, S. Scalzi, and M. Netto, “Nested PID steering control for lane keeping in autonomous vehicles,” Control Eng Pract, vol. 19, no. 12, pp. 1459–1467, Dec. (2011), doi: 10.1016/J.CONENGPRAC.2011.08.005.

[5]. Q. Liu et al., “Hierarchical Lateral Control Scheme for Autonomous Vehicle with Uneven Time Delays Induced by Vision Sensors,” Sensors 2018, Vol. 18, Page 2544, vol. 18, no. 8, p. 2544, Aug. (2018), doi: 10.3390/S18082544.

[6]. C. M. Kang, W. Kim, and C. C. Chung, “Observer-based backstepping control method using reduced lateral dynamics for autonomous lane-keeping system,” ISA Trans, vol. 83, pp. 214–226, Dec. (2018), doi: 10.1016/J.ISATRA.2018.09.016.

[7]. X. Wang, M. Fu, H. Ma, and Y. Yang, “Lateral control of autonomous vehicles based on fuzzy logic,” Control Eng Pract, vol. 34, pp. 1–17, Jan. (2015), doi: 10.1016/j.conengprac.2014.09.015.

[8]. G. Tagne, R. Talj, and A. Charara, “Higher-order sliding mode control for lateral dynamics of autonomous vehicles, with experimental validation,” IEEE Intelligent Vehicles Symposium, Proceedings, pp. 678–683, (2013), doi: 10.1109/IVS.2013.6629545.

[9]. A. Norouzi, M. Masoumi, A. Barari, and S. Farrokhpour Sani, “Lateral control of an autonomous vehicle using integrated backstepping and sliding mode controller,” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 233, no. 1, pp. 141–151, Mar. (2019), doi: 10.1177/1464419318797051.

[10]. R. Khan, F. M. Malik, N. Mazhar, A. Raza, R. A. Azim, and H. Ullah, “Robust Control Framework for Lateral Dynamics of Autonomous Vehicle Using Barrier Lyapunov Function,” IEEE Access, vol. 9, pp. 50513–50522, (2021), doi: 10.1109/ACCESS.2021.3068949.

[11]. A. I. Al-Odienat and A. A. Al-Lawama, “The Advantages of PID Fuzzy Controllers Over The Conventional Types,” Am J Appl Sci, vol. 5, no. 6, pp. 653–658, (2008).

[12]. D. H. Vu, S. Huang, and T. D. Tran, “Hierarchical robust fuzzy sliding mode control for a class of simo under-actuated systems with mismatched uncertainties,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 17, no. 6, pp. 3027–3043, Dec. (2019), doi: 10.12928/TELKOMNIKA.V17I6.13176.

[13]. K. Xu, X. Wu, M. Ma, and Y. Zhang, “Energy-based output feedback control of the underactuated 2DTORA system with saturated inputs,” Transactions of the Institute of Measurement and Control, vol. 42, no. 14, pp. 2822–2829, Oct. (2020), doi: 10.1177/0142331220933475.

[14]. J. Jiang and A. Astolfi, “Lateral Control of an Autonomous Vehicle,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 2, pp. 228–237, Jun. (2018), doi: 10.1109/TIV.2018.2804173.

[15]. J. Liu and Xinhua. Wang, “Advanced sliding mode control for mechanical systems : design, analysis and MATLAB simulation”. Springer, (2012).

[1]. C. Badue et al., “Self-Driving Cars: A Survey,” Expert Syst Appl, vol. 165, p. 113816, Jan. (2019), Accessed: Aug. 22, 2022. [Online]. Available: http://arxiv.org/abs/1901.04407 DOI: https://doi.org/10.1016/j.eswa.2020.113816

[2]. C. M. Filho, D. F. Wolf, V. Grassi, and F. S. Osorio, “Longitudinal and lateral control for autonomous ground vehicles,” IEEE Intelligent Vehicles Symposium, Proceedings, pp. 588–593, (2014), doi: 10.1109/IVS.2014.6856431. DOI: https://doi.org/10.1109/IVS.2014.6856431

[3]. R. Rajamani, “Vehicle Dynamics and Control”. Boston, MA: Springer US, (2012). doi: 10.1007/978-1-4614-1433-9. DOI: https://doi.org/10.1007/978-1-4614-1433-9

[4]. R. Marino, S. Scalzi, and M. Netto, “Nested PID steering control for lane keeping in autonomous vehicles,” Control Eng Pract, vol. 19, no. 12, pp. 1459–1467, Dec. (2011), doi: 10.1016/J.CONENGPRAC.2011.08.005. DOI: https://doi.org/10.1016/j.conengprac.2011.08.005

[5]. Q. Liu et al., “Hierarchical Lateral Control Scheme for Autonomous Vehicle with Uneven Time Delays Induced by Vision Sensors,” Sensors 2018, Vol. 18, Page 2544, vol. 18, no. 8, p. 2544, Aug. (2018), doi: 10.3390/S18082544. DOI: https://doi.org/10.3390/s18082544

[6]. C. M. Kang, W. Kim, and C. C. Chung, “Observer-based backstepping control method using reduced lateral dynamics for autonomous lane-keeping system,” ISA Trans, vol. 83, pp. 214–226, Dec. (2018), doi: 10.1016/J.ISATRA.2018.09.016. DOI: https://doi.org/10.1016/j.isatra.2018.09.016

[7]. X. Wang, M. Fu, H. Ma, and Y. Yang, “Lateral control of autonomous vehicles based on fuzzy logic,” Control Eng Pract, vol. 34, pp. 1–17, Jan. (2015), doi: 10.1016/j.conengprac.2014.09.015. DOI: https://doi.org/10.1016/j.conengprac.2014.09.015

[8]. G. Tagne, R. Talj, and A. Charara, “Higher-order sliding mode control for lateral dynamics of autonomous vehicles, with experimental validation,” IEEE Intelligent Vehicles Symposium, Proceedings, pp. 678–683, (2013), doi: 10.1109/IVS.2013.6629545. DOI: https://doi.org/10.1109/IVS.2013.6629545

[9]. A. Norouzi, M. Masoumi, A. Barari, and S. Farrokhpour Sani, “Lateral control of an autonomous vehicle using integrated backstepping and sliding mode controller,” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 233, no. 1, pp. 141–151, Mar. (2019), doi: 10.1177/1464419318797051. DOI: https://doi.org/10.1177/1464419318797051

[10]. R. Khan, F. M. Malik, N. Mazhar, A. Raza, R. A. Azim, and H. Ullah, “Robust Control Framework for Lateral Dynamics of Autonomous Vehicle Using Barrier Lyapunov Function,” IEEE Access, vol. 9, pp. 50513–50522, (2021), doi: 10.1109/ACCESS.2021.3068949. DOI: https://doi.org/10.1109/ACCESS.2021.3068949

[11]. A. I. Al-Odienat and A. A. Al-Lawama, “The Advantages of PID Fuzzy Controllers Over The Conventional Types,” Am J Appl Sci, vol. 5, no. 6, pp. 653–658, (2008). DOI: https://doi.org/10.3844/ajassp.2008.653.658

[12]. D. H. Vu, S. Huang, and T. D. Tran, “Hierarchical robust fuzzy sliding mode control for a class of simo under-actuated systems with mismatched uncertainties,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 17, no. 6, pp. 3027–3043, Dec. (2019), doi: 10.12928/TELKOMNIKA.V17I6.13176. DOI: https://doi.org/10.12928/telkomnika.v17i6.13176

[13]. K. Xu, X. Wu, M. Ma, and Y. Zhang, “Energy-based output feedback control of the underactuated 2DTORA system with saturated inputs,” Transactions of the Institute of Measurement and Control, vol. 42, no. 14, pp. 2822–2829, Oct. (2020), doi: 10.1177/0142331220933475. DOI: https://doi.org/10.1177/0142331220933475

[14]. J. Jiang and A. Astolfi, “Lateral Control of an Autonomous Vehicle,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 2, pp. 228–237, Jun. (2018), doi: 10.1109/TIV.2018.2804173. DOI: https://doi.org/10.1109/TIV.2018.2804173

[15]. J. Liu and Xinhua. Wang, “Advanced sliding mode control for mechanical systems : design, analysis and MATLAB simulation”. Springer, (2012). DOI: https://doi.org/10.1007/978-3-642-20907-9_3

Tải xuống

Đã Xuất bản

23-12-2022

Cách trích dẫn

Nguyễn Văn Trung, Trần Ngọc Châu, Nguyễn Như Toàn, Lê Đức Thịnh, Nguyễn Danh Huy, Nguyễn Tùng Lâm, và C. Hoàng Đức. “Bộ điều khiển Bên của Xe tự hành dựa Trên bộ điều khiển trượt kết hợp với luật tiệm cận tiếp cận Theo cấp số nhân”. Tạp Chí Nghiên cứu Khoa học Và Công nghệ quân sự, số p.h FEE, Tháng Chạp 2022, tr 65-72, doi:10.54939/1859-1043.j.mst.FEE.2022.65-72.

Số

Chuyên mục

Nghiên cứu khoa học

##category.category##

Các bài báo được đọc nhiều nhất của cùng tác giả